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Spring Rates

Elastic Modeling of Any Body

- I > - ) el - d >
‘ F F=F()
F F — Y
) "y Iy “—Jr .
RREEEED ol T = F _dF
y 2 Q y A O y k(y) = lim —
ay—0 Ay dy

Spring Constant

(a) A linear spring; (b) a stiffening spring; (c) a softening spring.

« Elasticity
 The ability to regain its original configuration after having been deformed.

A spring is a mechanical element that exerts a force when defor
« Also applicable for Torques and Moments
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Tension, Compression, and Torsion

Common Metrics for Further Analysis

The total extension or
contraction of a uniform bar in
pure tension or compression

The angular deflection of a
uniform solid or hollow round bar
subjected to a twisting moment T

AncoraSIR.com

s f Not applicable to a long bar
AE due to a possibility of buckling
lk I
y
L AE
1
o = n Applicable only to circular
GJ Cross sections
_F
y
T GJ
T
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Deflection Due to Bending

The problem of bending of beams probably occurs more often
than any other loading problem in mechanical design.

(e [=20in
“ g dY The curvature of a beam
AR F Y YYYYYYYYY) Loading, w — = - -
Y — S N subjected to a bending

@ Ri=7% k= moment M is given by

|V

; . 1M _ dyjar
e e V=YY pEl  [L+ (dy/d0)*P
-y V=-8001bf  EJ  dx° A

(&)

M

+ 2
M, M, Moment M M _dY  the radius of curvature

(©) My=M;=0 El  di?

EIf . .

. | e, dy For many problems in bending,
Slope, EIf .
o [ * im0 6=-—- theslope is very small, and for

@ these the denominator can be~~

Ely taken as unity.

Deflection, ET —
IRy = )
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Determine the Slope and Deflection of the beam

A Simple Example

e [=20in ———————>

Loading, w
w = 80 Ibf/in

Yy  YYYYYYYYYYYY
A A

- wl _wl
@ =73 R=73

the bending moment equation, for 0 = x = [, is

M=—x— —x

2 2
dy

El— =
dx

}

M _dy
EI  dx?

J wl , w ,
wl 5, w4

de=7x —gx + C,

4

— Boundary Conditions ¥ = 0 atx = 0 and L

Mdx = —x° — —x* + + C, ——
dx 12x 24x Cix+ G

o |
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C2 =0, Cl = _w13/24
wx
. _ M — P — P
Deflection » oAl 2x =% = 8
Slope  0=2= " (o — 4y’
dx  24EI
= wl
i *=0 24EI =i = Q4EI !
- e _ swit
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Deflection, Ely
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Beam Deflection Methods

For beams with discontinuous loading and/or geometry.

I.e. simple loading

for direct solution, Forms of solution:
such as those in the

Appendix Table-9 1 Closed-form, or

2 Represented by infinite series, which amount to closed form if the series are
i.e. Fourier series —  rapidly convergent, or
3 Approximations obtained by evaluating the first or the first and second terms.

i.e. calculated /

estimation

Some popular methods:

* Superposition

* The moment-area method
* Singularity functions

* Numerical integration
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Beam Deflections by Superposition
1+1=2

 Superposition
* resolves the effect of combined loading on a structure by determining
the effects of each load separately and adding the results algebraically.

 Applicable Conditions:
(1) each effect is linearly related to the load that produces it,
 (2) a load does not create a condition that affects the result of another
load, and

* (3) the deformations resulting from any specific load are not large
enough to appreciably alter the geometric relations of the parts of the

structural system.

* Make the best use of Tables (Simple, Common Solutions)

SUSTech
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1 Cantilever—end load

' ‘

2\

|
:

M

2 Cantilever—intermediate load

|

1
- a b
F
A YB c
® | —_—
Ml
Rl
1%
+
X

"
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3 Cantilever—uniform load

R =V=F M, =FI ¥
M=F(x—1) [
Fx’ XXXRRRIRRRRRAT:
y = a(x - 30 @ — X
FI? M, A
Yuux = 3pr Ry
v
\
X
M
/ x
4 Cantilever—moment load
R =V=F M, =Fa
My =F(x —a)  Mg=0 ’
I |
Fx* M
Yag = @(x — 3a) ! ‘Ma
® A __.__-—*’é)
a* B o
}’BC=@(“_3X) A
Rl
Fa*
ymax_ 6E1(a_3l) v
| X
M
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wi?
Rl = UJLI Ml = -
2
w 2
V=wl-x M=-_0-x
_ (41x — X — 61)
YT aE
__wt’
ymﬂ)( SEI
R1=V=0 M1=M=MB
M3x2 Mgll
y = =

T opr Ym T ap
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5 Simple supports—center load

|

l |
~—1/2 F
A B
X

RI R2

6 Simple supports—intermediate load

1
-a b
F
A Y8 c
x
R, R,
v
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F
Rl = R2 = E
Vap = Ry Ve = —R;
aB ="y BC = 2( X)
Fx
= = 4y — 32
YaB 48EI( X 3)
__FP
Ym = T UREL
T 1T
Vs = Ry Vee = =Ry
Fbx Fa
Myp —T MBC=T(1_X)
Fbx N N
— b I
Yag 6EII(I )
Fa(l—x) , )
= + - 21
Ypc 6EI ( a X)

7 Simple supports—uniform load

y
1

RRRXRRTRRRRRRR]

[ b’
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M wx(l )
=—(U—-x
2

Y= Sag 2 =% = )
Swl*
ymax ==
384E1
M, M,
Ri=Ry=—" v=="
1 !
MBX MB
Myp = Mpe=—(x—-1D
! !
M
Yag = 6?';"1(;;2 +3a® — 6al + 21)
M,
Yoc = 6??1[’53 =3I + x(21° + 3d%) — 3d’l]




9 Simple supports—twin loads

|

10 Simple supports—overhanging load

¥y
-~ [—n—q—a—n—'

) b

AncoraSIR.com
9/18/2019

11 One fixed and one simple support—center load

Ri=R=F Viyg=F Vge=0 | _1IF _5F _3FI
! ‘ 1= Ry =— 1=
Vep = —F _‘_HZ_T 16 16 16
Vig = R Vie = —R
M,y = Fx My = Fa Mep = F(l — x) (G) A B c : AB 1 BC 2
F 5F
X (@ + 3¢ = 3l0) "1 oo M mgle =3 Mie =g (=
Yap = X a- — 3la R
6EI 1
PC = o
= e -
= &(3;:2 +a — 3Ix) v Y487 96kl
YBC ™ GEI
4qa _ P oo o
_ =3y EI + e 96E
Ymax = oapr ¢ :
Vo :
El
M
M —
EI /\
+
g = l/
y =[x
Fa F 12 One fixed and one simple support—intermediate load
R1=_ Rz——(l+ﬂ) ,
! ! ’ rR=ar vy R=TCGi-a
| = P2 e,
Fa 4 ! F b ! 213 2 213
VAB B —T VBC =F Fb 2 2
|4 B c M, =~ ("= b)
Fax © [ — T x 2/
Mup = 7 Mpc = F(x — | — a) M, tR R, Vip = R, Vie = —Ry
1
Fb
Fax Mz = — [0l — P + x(31* — b*)]
yag = (P —x%) v o7
6EI
Fa*
Flx — 1 Mge = —=(3% — 3Ix — al +
ysc=%[(x— D% — a(Gx — D] + e =5 ¢ al + ax)
x Fbx?
LA - v = ST~ ) + 5 — )]
B — a
3El
M _ _ Fx - a)}
/\ Ypc = YaB 76&'
+
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13 One fixed and one simple support—uniform load

|

1

@ 2232222223222 2)
M

i TRI

M

b

PN
L

AncoraSIR.com

9/18/2019

N

l
P UL R A s
8 8 8
Swl
="— —wx
8

wxz

= I - x)(2x — 3
¥ 48E1( x)( 30
Ri=R=o  my=m ="
1 253 1 2=
VAB=_V5C=E

F F
My = §(4x = 1) Mpe = §(3l — 4x)

2

X
= ax -3
YaB 48EI( x — 30)
_FP
Yma = o0y

15 Fixed supports—intermediate load

’|

16 Fixed supports—uniform load

v

w
@ uuugwﬁgg“
M, T
Rl RZ

y
1 I

9-
M2
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Fb’
R, = 1—3(30 + b)

B Fab® B Fa’b
1= P2 2= P
Vip = R, Vee = =R,

Fb?
Myp = lT[x(3a + b) — al]

Mpe = Myp — F(x — a)
2.2

P Ga + by — 3al]
= ——[x(3a — 3a
a8 = SR
_ Fa'(l - )’
Jae 6EI
wl
R1=R2=7 M1=M2=
w
V="2(—-2x
2( )

_w 22
M—12(6lx 6x %)

wx 2

= — 1 — x)?
Y= Tt
_ wl*
Ymax = 394kl

2

Fa
R, = 1—3(31) + a)

[(I = x)(3b + a) — 3bl]
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Example 1: Consider a uniformly loaded beam
with a concentrated force

Using superposition, determine the reactions and the deflection as a function of x.

bl T R

Fb
S R P) o - P - P

= [ = =
F I l I 2 Y48 \6E11 \2E
le—a—>f«——— b ——> I ']
g wl YBC :l—Fﬂ(!r — x)( : Zh —(Z.rr - x -
ALY Y Y v v Y vy y yC . R, = 6EIl }
A B A ] I EE——
R, R, 5- R - /
-’ / ~ A~ I
6 Simple supports—intermediate load 4 ” 7 Simple supporr%uniform load ~ N ,
s I Fb Fa y V4 wl
‘ Ri=— Ro=—r , R =R, = V—2'~wx
' Vaw =Ry Vie = R, PGl M——(z »
A B c *
% _ Fbx _Fa, _ R, R,
tm\—/f& M, = / Mpe = / (= x) / v W 24EI(21x . 13 — P
F I I I v I I I
v Vag ﬂ(ﬁ + b =17 i _ swit
I 6EIl Yowx = ~ gy
Fa(l — x) +

‘yBC 76)'51! 2+ d - zlx)J \I

N
X
______J '
T
67 o)
¢ \
M M g :
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.
N
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Example 2: beam with uniformly distributed force
and overhang force

determine the deflection equations using superposition.

For region BC,

dy_d

N 2 3 _ 3y = 3_p3
| | A e e e M 7 P B i dx  dx {2451(2" B }} 2451(6& A
A”HHF ¢
! 3
)
R R, x = _ 2 _ 4B _py W )
| | ! 9 = 24EI{6H 4l Py = 24E]  the (E‘lection due to F, in BC,
4~
For region AB ~ Yag (2!'12 -*-P I = } wh F(x—1 ,
& 2451 6EH Yo = o =D+ [(x — D?— a(Bx — D]

10 Simple supports—overhanging load

N The deflection in region BC due to w is Oz(x — [),

7 Simple supports—uniform load ‘ \ -
y wl 1 y _fa _F
1 ‘ R] Rz—_ V=w?_’w}€ \ “t}—I—P‘—ﬂ—P‘ Rl ! R2 [(l+a)
F
w ! Fa
AIARTATIATATATS \'M:—(l ) B S Je Vis= — Ve =F
RJ R F I I
v v : y= 24EI(21x -x - lfn N M=~ Mye=Fx— 1~ a)
174 I 4— — v \ —— “
¥y = sl y — Fﬂ(zl _ xl)
T 3R4E] + "okl
* F(x 1)
x - x Yac = [(x = D —a(3x — D]
Fa 2
M o= =gt
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Strain Energy

The external work done on an elastic member in deforming it
Is transformed into strain, or potential, energy.

Fl
the product of the Fp T AE
average force and = Ey = E J 2 tension and compression Kk = T
. U= | ——dx
the deflection 2AE
By substituting appropriate expressions for g=21t S
k, strain-energy formulas for various simple 267 2 torsion ==
loadings may be obtained. e J' T . o 1
2GJ
Fl
- - U=%46
Strain-Energy Correction direct shear
Factors for Transverse Shear = J L
Beam Cross-Sectional Shape Factor C 246
Rectangular 1.2 M3
Circular 1.11 - E
Thin-walled tubular, round 2.00 , bending
Box sections’ 1.00 U= J£ dx
Structural sections’ 1.00 2E1
"Use area of web only. U= CVEI
2AG
N transverse shear
= J v SUSTech
AncoraSIR.com 2AG B
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Castigliano’s Theorem

Virtual Work

« When forces act on elastic systems subject to small displacements, the
displacement corresponding to any force, in the direction of the force, is equal to
the partial derivative of the total strain energy with respect to that force.

ou . . , L . . L . ; 2
i =R d; is the displacement of the point of application of the force F; in the direction of F,. 5=-"L (F_!) _H
oF; aF \2AE) AE
] . . . . . T! 7!
au where ; is the rotational displacement, in radians, of the beam where the moment M, 6= =—
0 =— . . . - dT 2GJ GJ
aM, exists and in the direction of M.

« (astigliano’s theorem can be used to find the deflection at a point even though no
force or moment acts there.

1 Set up the equation for the total strain energy U by including the energy due , - J ! (F "F> tension and compression
e - . . . . J . H
to a fictitious force or moment Q acting at the point whose deflection is to O‘F AE '\ 0F,
be found
. ) i . . N : ou 1 T :
2 Find an expression for the desired deflection 8, in the direction of @, by taking ;= — | T—— ) dx torsion
L . . ) (}M,- GI\ oM;
the derivative of the total strain energy with respect to Q.
3 Since Q is a fictitious force, solve the expression obtained in step 2 by setting au J 1 (MdM ) d bendi
. . . - - - o == | —|M—)dx ending
Q equ‘al to zero. Thus, the displacement at the point of application of the ficti- aF, EI aF;
tious force Q 1s /
M
SZZ_U U o ([ M ) (M M L[ oM
— ) - ) - or; )
o) B [ )
daF;  aF; 2ET dF; \2EI 2ET El oF;

AncoraSIR.com
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Statically Indeterminate Problems

Overconstrained with more unknown support (reaction) forces and/ or moments
than static equilibrium equations.

Only one equation of static equilibriumcan the nested helical springs
F=F—F —F,=0

be written, but there are two unknowns. ~

Same deflections 5, =8,=5

F, F

bk

(a)
v
- . - Fy e S F,
This is a simple example. F_%F,,_szo o F,:k"’?'”k l ’ l
. . 5, T - - +
Common situations are '
usually more complicated. 1 b k
F, = kF/(k + k)

So how to do it in general? 1 ®)

k=F/8=k + k.

SUSTech
AncoraSIR.com ey
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Procedures 1 & 2

for general statically indeterminate problems.

Procedure 1

1 Choose the redundant reaction(s). There may be alternative choices (See Ex-
ample 4-14).

2 Write the equations of static equilibrium for the remaining reactions in terms of
the applied loads and the redundant reaction(s) of step 1.

3 Write the deflection equation(s) for the point(s) at the locations of the redun- (Can be solved
dant reaction(s) of step 1 in terms of the applied loads and the redundant N
reaction(s) of step 1. Normally the deflection(s) is (are) zero. If a redundant reac- « In any of the
tion is a moment, the corresponding deflection equation is a rotational deflection standard ways.)
equation.

4 The equations from steps 2 and 3 can now be solved to determine the reactions.

Procedure 2

1 Write the equations of static equilibrium for the beam in terms of the applied
loads and unknown restraint reactions.

2  Write the deflection equation for the beam in terms of the applied loads and
unknown restraint reactions.

3 Apply boundary conditions to the deflection equation of step 2 consistent with
the restraints.

) SUSTech
AncoraSIR.com 4 Solve the equations from steps 1 and 3. Sty
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Example (using superposition):
Determine the reactions using procedure 1.
Beam 11 of Appendix Table A-9

7 1 Choose R, at B to be the redundant reaction.

A
e~
\

2 Using static equilibrium equations solve for R; and M, in terms of F' and R,.

F This results in
‘ 2 Y A B
x Fl
= R,=F—R, M1=5—Rzl (1)
(a)
3 Write the deflection equation for point B in terms of F and R,.
y
F 1 Cantilever—end load 2 Cantilever—intermediate load
A B ¥ R=V=F M =F , R=V=F M, =Fa
Z X ] M= F(x—1) D ¢ R Myz = Flx —a)  Myc=0
-~ ' = B LF LB
L4y R, £ @ |—\_ : Y emr™ @ )A_f_{___—-_-‘(' i Yan = o (x = 3a)
MI tR S ,L"-‘ M, Fa’
i Ymax = 3EI 1"': Ype = oE] (a = 3x)

(b)

' v Vmax = %(u - 30
Selected as ’ - ‘ . |

Redundant

Reaction .
— e

AncoraSIR.com
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Example (using superposition):
Determine the reactions using procedure 1.
Beam 11 of Appendix Table A-9

7 1 Choose R, at B to be the redundant reaction.
< » | . . iqer . . .
- ! g 2 Using static equilibrium equations solve for R, and M, in terms of F and R,.
F This results in
‘ 2 ¥ A B
x Fl
2 R,=F—R, M1=5—Rzl (1)
(a)
3 Write the deflection equation for point B in terms of F and R,.
y
1F 1 Cantilever—end load 2 Cantilever—intermediate load
A B ¥ ¥ R=V=F M, =Fa
( X A %fj My = F(x — a) Myc=0
T 0 4—::—-[-—{.—-— B
F F Fx®
M R '8 © e x ® A B c Yan = m(.\‘ = 3a)
1 1 X CM. t CM 1)A_—_—-—'—'“" ! —F J—
R, ‘ Yee = a (a = 3x)
@) " Cre
Vv

Selected as

‘ ’ | =1/2,

Redundant ' a4 /

Reaction — v , v
- Ry’ 7 _ F(1/2)? ( )

I
o= ———( — = — =3
Bl 6El(l 3D B2 6EI \2

AncoraSIR.com
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Example (using superposition):
Determine the reactions using procedure 1.
Beam 11 of Appendix Table A-9

Fl
y RI—F_RZ Ml—?_Rzl “)
-« I .’_| 212
F op= —— (1 — 3l
N R = e )\
Yy A B
0 * o =0
20 6El \2
¥
lF
A B R,I? F(1/2) (z ) R, 5FP
X Op = ——— — —+ — — = — — = 2
( TO 5= "o T T Tepr \2 77 T 3 T asE 2
4 Equation (2) can be solved for R, directly. This yields
()
5F
Ry = — (3)
Selected as 16
Redundant Next, substituting R, into Egs. (1) completes the solution, giving
Reaction
11F 3FI
Rl = M1 = (4)
16 16

SUSTech
AncoraSIR.com ey
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Example (using Castigliano’s Theorem):.
Determine the reactions using procedure 1.

Beam 11 of Appendix Table A-9

(a)

(b)

Selected as

Redundant
Reaction

AncoraSIR.com

1 Choose M, at O to be the redundant reaction.

2 Using static equilibrium equations solve for R, and R, in terms of F and M,.

This results in

R,=—-—— (5)

3 Since M, is the redundant reaction at O, write the equation for the angular deflec-
tion at point O. From Castigliano’s theorem this is

oU
0p = —
7 M,

(6)

Southern University
of Science and Technology

9/18/2019
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Example (using Castigliano’s Theorem):.
Determine the reactions using procedure 1.

Beam 11 of Appendix Table A-9

We can apply Eq. (4-31), using the variable x as shown in Fig. 4-16b. However,
- simpler terms can be found by using a variable X that starts at B and is positive to
‘ the left. With this and the expression for R, from Eq. (5) the moment equations are
B

M_<F_Ml)A .
2 1 )7
(a)

[
2 (7)

(8)
For both equations
b
T 0
M

®) \

Selected as

(?)
Substituting Eqgs. (7) to (9) in Eq. (6), using the form of Eq. (4-31) where F; = M|,
gives

oau 1 ([(F MN\.( 2\ . [('[(F M.
o=, TE\) \2 7 )\ )T\ )Y
Redundant : 0 2
Reaction 3F1 / P
M, =— (10 —Flx—< |l == )dz} =
I (oA [ P
AncoraSIR.com

SUSTech
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Example (using Castigliano’s Theorem):.
Determine the reactions using procedure 1.

Beam 11 of Appendix Table A-9

3Fl F M F M
F M, =— (10 _r. M _
~ 3 ya B L6 R=2773 k=977 5)
) A °
(@)
! 4 Substituting Eq. (10) into (5) results in
F
l 11F 5F
A B = = = —
( TO T * TR IT: (1)
M, |R, ~~ IR,
Selected as The same results are derived.

Redundant
Reaction

SUSTech
AncoraSIR.com ey
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Global Instability—Buckling

Compressive loads/stresses within any long, thin structure can cause structural instabilities.

Long columns with central loading >

»|

Intermediate-length columns with central loading

Columns with eccentric loading

B W N =

Struts or short columns with eccentric loading

The column becomes unstable when P (still at
a relatively low value) reaches a specific value,

causing bending to develop rapidly. @c=1 he=4  ©C-1  @c=2
Euler column formula b Cm’El
End-Condition Constant C for Crltlcal Load cro 12
Column End Theoretical Conservative Recommended
Conditions Value Value Value* .. 5
Fiedf , 1 : ) i Critical P, Cm'E
ixed-free 7 1 F : o 2
Rounded-rounded 1 1 1 I Unit Load A (l/ k)
Fixed-rounded 2 ! L2 I/k is called the slenderness ratio.
Fixed-fixed 4 1 1.2

S e . SUSTech
*To be used only with liberal factors of safety when the column load is accurately known. Commonly used to CIaSSIfy columns O cloes and Teckclonr
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Elastic Stability

Be aware of the potential safety issues.

y Finite-element representation may be
| necessary in certain unique cases, i.e. flange
buckling of a channel in compression.

-5
-

Frrr 7 rryryy

Torsional buckling
of a thin-walled
beam in bending.

 |If the beam is long enough and the ratio of

_ n ! Al Outside the
b/h is sufficiently small, there is a critical scope of this
value of F for which the beam will course.

collapse in a twisting mode as shown.
» This is due to the compression in the
bottom fibers of the beam which cause the

fibers to buckle sideways (z direction). Tt
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Shock & Impact

Shock describes any suddenly applied force or Impact refers to the collision of two masses
disturbance. with initial relative velocity.

» Desirable Impact
« Undesirable Impact A highly simplified mathematical model of an

automobile in collision with a rigid obstruction.
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mk'l + k1x1 + kz(xl - XQ) =0

m)'C'z + k3X2 - kz(xl - XQ) =0

v
Advanced courses in Mechanical ‘
Vibration is a good point of continuation.  ¢cr..,
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Next class

» Discussion for Group 1: Mechanism Design
« Friday 0800-1000, Sep 20

 Room 202, 1 Lychee Park

» Lab for Group 2: Mechanism Design
« Friday 0800-1000, Sep 20
 Room 412, 5 Wisdom Valley

Thank you!

Song Chaoyang (songcy@sustech.edu.cn)

«  Xiao Xiaochuan (xiaoxc@sustech.edu.cn)

*  Yu Chengming (11930324@mail.sustech.edu.cn)
*  Zhu Wenpei (11930368@mail.sustech.edu.cn)

« Zhan Zhen (11930498@mail.sustech.edu.cn)
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