ME303 Introduction to Mechanical Design

Lecture 15 Flexible Mechanical Elements

Song Chaoyang

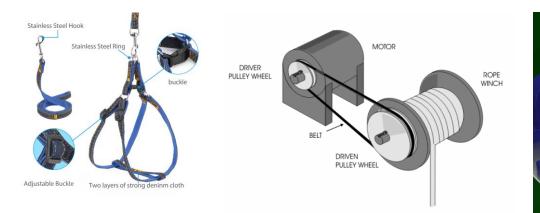
Assistant Professor

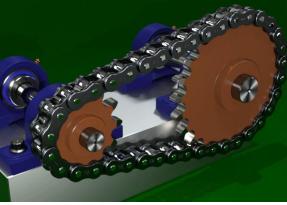
Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

Agenda

Week 14, Wednesday, Dec 11, 2019


- Belts
- Flat- and Round-Belt Drives
- V Belts
- Timing Belts
- Roller Chain
- Wire Rope
- Flexible Shafts



Flexible Mechanical Elements

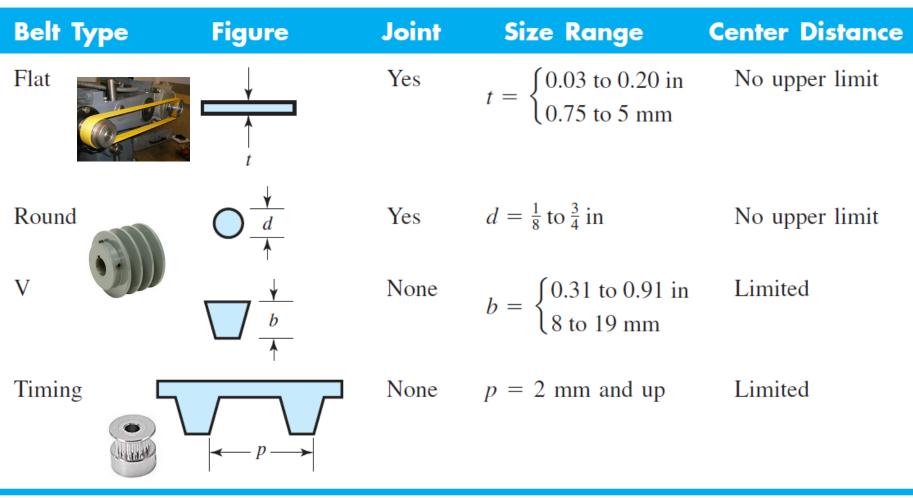
Used in conveying systems and in the transmission of power over comparatively long distances.

- As a replacement for gears, shafts, bearings, and other relatively rigid power-transmission devices.
 - For power transmission
 - To increase or decrease speed or torque
 - Mainly used in conveying systems

AncoraSIR.com

12/11/2019

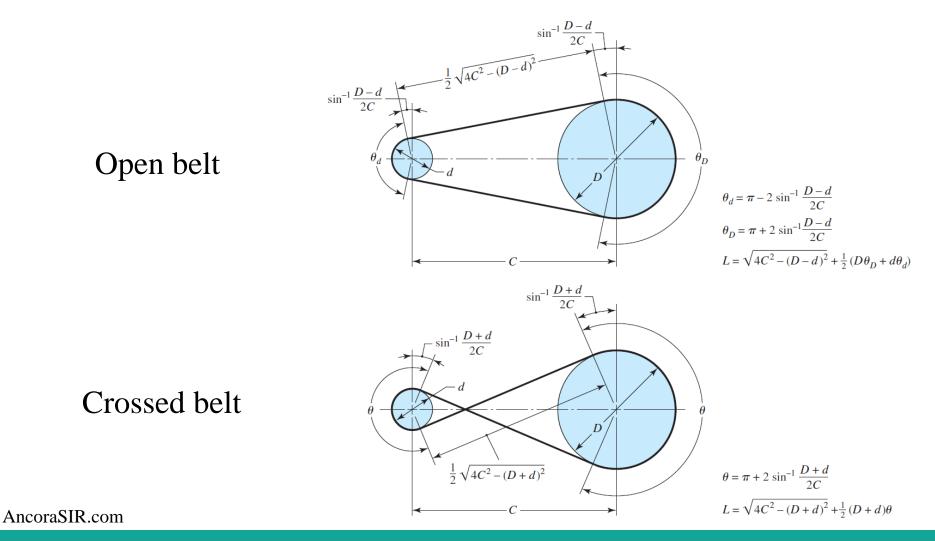
Bionic Design & Learning Group


Flexible Mechanical Elements

Advantages

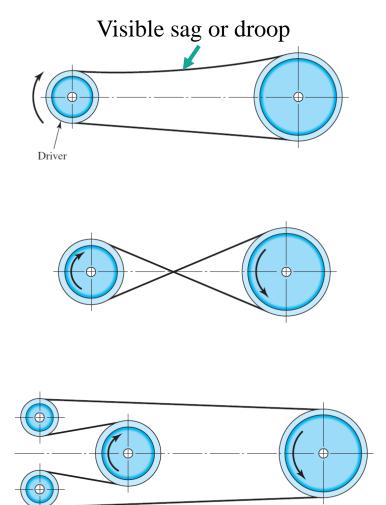
- Simplifies the design of a machine
- Substantially reduces the cost
- Shock absorption, damping out or isolate the vibration effects
- Generally high efficiency that ranges from 90% to 98%
- Can drive several shafts from a single power source
- Can tolerate some degree of misalignment
- Have a finite life, so replacement is required after the first sign of deterioration.

Four Principal Types of Belts



Characteristics of Belts

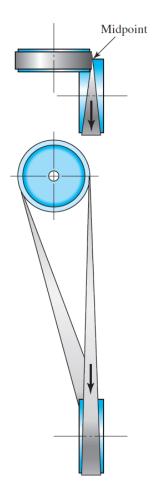
- In all cases, the pulley axes must be separated by a certain minimum distance, depending upon the belt type and size, to operate properly.
- They may be used for long center distances.
- Except for timing belts, there is some slip and creep, and so the angular-velocity ratio between the driving and driven shafts is neither constant nor exactly equal to the ratio of the pulley diameters.
- In some cases an idler or tension pulley can be used to avoid adjustments in center distance that are ordinarily necessitated by age or the installation of new belts.


Flat-belt Geometry

12/11/2019

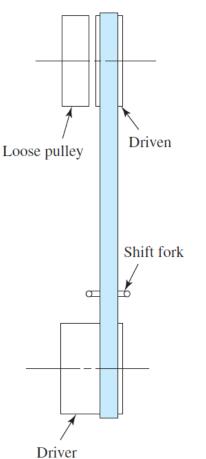
Non-reversing and Reversing Belt Drives

- Non-reversing open belt.
- Reversing crossed belt.
 - Crossed belts must be separated to prevent rubbing if high-friction materials are used.

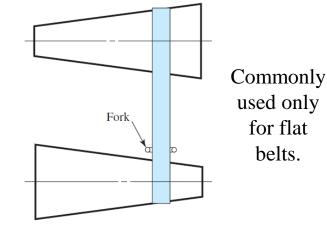


Quarter-twist belt drive

Other Belt Drive Arrangements



- A flat-belt drive with out-of-plane pulleys
 - An idler guide pulley must be used if motion is to be in both directions.
 - The shafts need not to be at right angles.
 - The pulleys must be positioned so that the belt leaves each pulley in the midplane of the other pulley face.
- Other arrangements may require guide pulleys to achieve this condition.


As a Clutch or For Speed Variation

Other Belt Drive Arrangements

- This drive eliminates the need for a clutch.
 - Flat belt can be shifted left or right by use of a fork.
 - Between a loose and a right pulley

Can also be used for V belts and round belts by using grooved sheaves

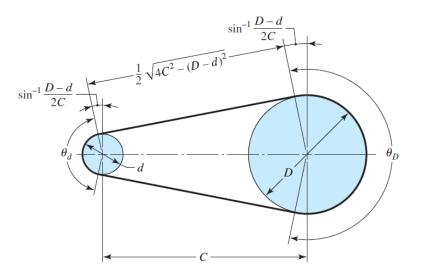
About Flat Belts

- Materials
 - Made of urethane and also of rubber-impregnated fabric reinforced with steel wire or nylon cords to take the tension load.
 - One or both surfaces may have a friction surface coating.
- Characteristics
 - Quiet
 - Efficient at high speeds
 - Can transmit large amounts of power over long center distances.
- Common use
 - Usually purchased by the roll
 - Then cut and the ends are joined by using special kits furnished by the manufacturer.
 - Two or more flat belts running side by side, instead of a single wide belt, are often used to form a conveying system.

About V Belt

- Material
 - Fabric and cord, usually cotton, rayon, or nylon, and impregnated with rubber.
- Characteristics
 - Slightly less efficient than flat belts
 - But a number of them can be used on a single sheave, thus making a multiple drive.
- Common Use
 - In contrast with flat belts, V belts are used with similar sheaves and at shorter center distances.
 - V belts are made only in certain lengths and have no joints.

12/11/2019


About Timing Belts

- Materials
 - Rubberized fabric and steel wire
 - Have teeth that fit into grooves cut on the periphery of the sprockets.
- Characteristics
 - The timing belt does not stretch or slip
 - Consequently transmits power at a constant angular-velocity ratio.
- Advantages
 - No initial tension is necessary, so that fixed-center drives may be used.
 - The elimination of the restriction on speeds.
 - The teeth make it possible to run at nearly any speed, slow or fast.
- Disadvantages
 - The first cost of the belt,
 - The necessity of grooving the sprockets
- The attendant dynamic fluctuations caused at the belt-tooth meshing frequency. AncoraSIR.com

Flat- and Round-Belt Drives

Modern flat-belt drives consist of a strong elastic core surrounded by an elastomer.

- Has an efficiency of about 98 percent, like a gear drive
- Produce very little noise
- Absorb more torsional vibration from the system

$$\theta_d = \pi - 2 \sin^{-1} \frac{D - d}{2C}$$
$$\theta_D = \pi + 2 \sin^{-1} \frac{D - d}{2C}$$

- D = diameter of large pulley
- d = diameter of small pulley
- C =center distance
- θ = angle of contact

AncoraSIR.com

12/11/2019

Flat-belt-drive Theory

Firbank's Explanation

- Caused by *elastic creep* and associated with *sliding friction*
 - A change in belt tension due to friction forces between the belt and pulley will cause the belt to elongate or contract and move relative to the surface of the pulley.
- The angle of contact at the power transmitting portion
 - The action at the driving pulley is such that the belt moves more slowly than the surface speed of the pulley
 - the *effective arc* (power transmission portion) and the *idle arc*
- Substantially more power is transmitted by *static friction* than sliding friction.
- The coefficient of friction for a belt
 - With a nylon core and leather surface was typically 0.7,
 - but that it could be raised to 0.9 by employing special surface finishes.

A Different Model

Assume the friction force on the belt is proportional to the normal pressure along the arc of contact

- Free body of an infinitesimal element of a flat belt in contact with a pulley
 - The differential force dS is due to centrifugal force,
 - *dN* is the normal force between the belt and pulley,
 - *fdN* is the shearing traction due to friction at the point of slip.
 - The belt width is *b* and the thickness is *t*.

 $dS = (mrd\theta)r\omega^2 = mr^2\omega^2 d\theta = mV^2 d\theta = F_c d\theta$

$$\sum F_r = -(F + dF)\frac{d\theta}{2} - F\frac{d\theta}{2} + dN + dS = 0 \longrightarrow dN = F d\theta - dS$$

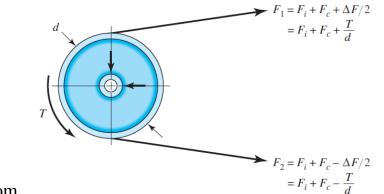
$$\sum F_t = -f dN - F + (F + dF) = 0$$

$$dF = f dN = fF d\theta - f dS = fF d\theta - f mr^2 \omega^2 d\theta \longrightarrow \frac{dF}{d\theta} - fF = -f mr^2 \omega^2$$

Mechanic Analysis

tight-side tension F_1

loose-side tension F_2


$$\frac{dF}{d\theta} - fF = -fmr^2\omega^2 \qquad F = A\exp(f\theta) + mr^2\omega^2$$

Assuming θ starts at the loose side, the boundary condition that *F* at θ =0 equals F_2 gives A = $F_2 - mr^2v^2$.

 $F = (F_2 - mr^2\omega^2) \exp(f\theta) + mr^2\omega^2$

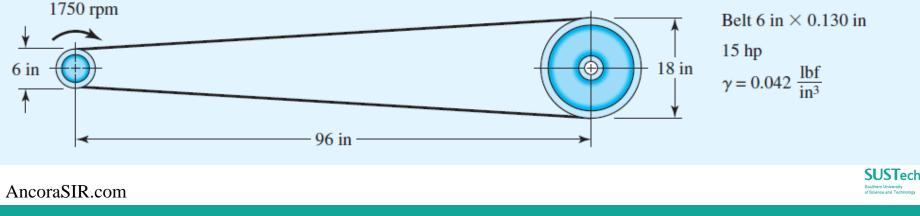
At the end of the angle of wrap ϕ , the tight side,

$$F|_{\theta=\phi} = F_1 = (F_2 - mr^2\omega^2) \exp(f\phi) + mr^2\omega^2$$

the belting equation $\frac{F_1 - mr^2\omega^2}{F_2 - mr^2\omega^2} = \frac{F_1 - F_c}{F_2 - F_c} = \exp(f\phi)$ $F_c = mr^2\omega^2$ $F_1 - F_2 = (F_1 - F_c)\frac{\exp(f\phi) - 1}{\exp(f\phi)}$ $F_1 - F_2 = \frac{2T}{d}$

 F_i = initial tension F_c = hoop tension due to centrifugal force $\Delta F/2$ = tension due to the transmitted torque T d = diameter of the pulley

AncoraSIR.com


12/11/2019

SUSTech

Example of Flat-Belt Analysis

A polyamide A-3 flat belt 6 in wide is used to transmit 15 hp under light shock conditions where $K_s = 1.25$, and a factor of safety equal to or greater than 1.1 is appropriate. The pulley rotational axes are parallel and in the horizontal plane. The shafts are 8 ft apart. The 6-in driving pulley rotates at 1750 rev/min in such a way that the loose side is on top. The driven pulley is 18 in in diameter. See Fig. 17–10. The factor of safety is for unquantifiable exigencies.

- (a) Estimate the centrifugal tension F_c and the torque T.
- (b) Estimate the allowable F_1 , F_2 , F_i and allowable power H_a .
- (c) Estimate the factor of safety. Is it satisfactory?

Estimate the centrifugal tension F_c and the torque T

(a) Eq. (17–1):
$$\phi = \theta_d = \pi - 2 \sin^{-1} \left[\frac{18 - 6}{2(8)12} \right] = 3.0165 \text{ rad}$$

Table 17-2: $\gamma = 0.042 \text{ lbf/in}^3$ f = 0.8 $F_a = 100 \text{ lbf/in}$ $\exp(f\phi) = \exp[0.8(3.0165)] = 11.17$ $V = \pi(6)1750/12 = 2749 \text{ ft/min}$ $w = 12\gamma bt = 12(0.042)6(0.130) = 0.393 \text{ lbf/ft}$

Eq. (*e*):

$$F_c = \frac{w}{g} \left(\frac{V}{60}\right)^2 = \frac{0.393}{32.17} \left(\frac{2749}{60}\right)^2 = 25.6 \,\text{lbf}$$

$$T = \frac{63\ 025H_{\text{nom}}K_sn_d}{n} = \frac{63\ 025(15)1.25(1.1)}{1750}$$

= 742.8 lbf \cdot in

Estimate the allowable F_1 , F_2 , F_i

(b) The necessary $(F_1)_a - F_2$ to transmit the torque T, from Eq. (h), is

$$(F_1)_a - F_2 = \frac{2T}{d} = \frac{2(742.8)}{6} = 247.6$$
 lbf

For polyamide belts $C_v = 1$, and from Table 17–4 $C_p = 0.70$. From Eq. (17–12) the allowable largest belt tension $(F_1)_a$ is

$$(F_1)_a = bF_aC_pC_v = 6(100)0.70(1) = 420$$
 lbf

$$F_2 = (F_1)_a - [(F_1)_a - F_2] = 420 - 247.6 = 172.4$$
 lbf

and from Eq. (i)

$$F_i = \frac{(F_1)_a + F_2}{2} - F_c = \frac{420 + 172.4}{2} - 25.6 = 270.6 \text{ lbf}$$

AncoraSIR.com

SUSTech

The combination $(F_1)_a$, F_2 , and F_i will transmit the design power of $H_a = H_{\text{nom}}K_s n_d = 15(1.25)(1.1) = 20.6$ hp and protect the belt. We check the friction development by solving Eq. (17–7) for f':

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c} = \frac{1}{3.0165} \ln \frac{420 - 25.6}{172.4 - 25.6} = 0.328$$

As determined earlier, f = 0.8. Since f' < f, there is no danger of slipping.

(c) From step 9 on p. 880,

$$n_{fs} = \frac{H_a}{H_{\text{nom}}K_s} = \frac{20.6}{15(1.25)} = 1.1$$
 (as expected)

The belt is satisfactory and the maximum allowable belt tension exists. If the initial tension is maintained, the capacity is the design power of 20.6 hp.

AncoraSIR.com

12/11/2019

SUSTech

Initial Tension

The key to the functioning of the flat belt as intended

- Weighted idler pulley
 - Motorized pulley drive
- Pivoted motor mount
- Catenary-induced tension
 - the weight of the belt itself can provide the initial tension.

$$dip = \frac{12(C/12)^2 w}{8F_i} = \frac{C^2 w}{96F_i}$$

$$dip = dip$$
, in
 $C = center-to-center distance, in$
 $w = weight per foot of the belt, lbf/ft$
 $F_i = initial tension, lbf$

W (a)Slack side Tight side F_1 *(b)* dip (*c*)

AncoraSIR.com

12/11/2019

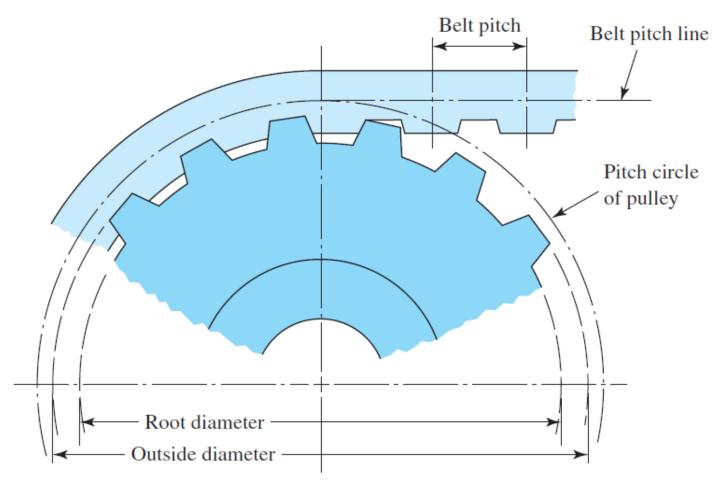
A Decision Set for a Flat Belt

- Function: power, speed, durability, reduction, service factor, *C*
- Design factor: n_d
- Initial tension maintenance
- Belt material
- Drive geometry, d, D
- Belt thickness: t
- Belt width: *b*

Depending on the problem, some or all of *the last four* could be design variables.

Belt cross-sectional area is really the design decision, but available belt thicknesses and widths are discrete choices.

Available dimensions are found in suppliers' catalogs.


V Belts

• The cross-sectional dimensions of V belts have been standardized by manufacturers, with each section designated by a letter of the alphabet for sizes in inch dimensions.

Belt Section	Width <i>a,</i> in	Thickness <i>b,</i> in	Minimum Sheave Diameter, in	hp Range, One or More Belts
А	$\frac{1}{2}$	$\frac{11}{32}$	3.0	$\frac{1}{4}$ -10
В	$\frac{21}{32}$	$\frac{7}{16}$	5.4	1–25
С	$\frac{7}{8}$	$\frac{17}{32}$	9.0	15-100
D	$1\frac{1}{4}$	$\frac{3}{4}$	13.0	50-250
E	$1\frac{1}{2}$	1	21.6	100 and up

Timing Belts

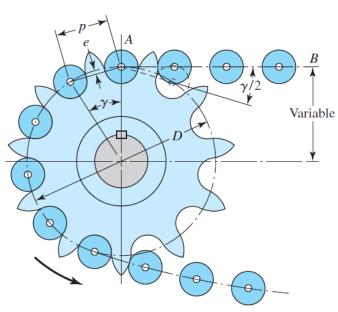
12/11/2019

SUSTech

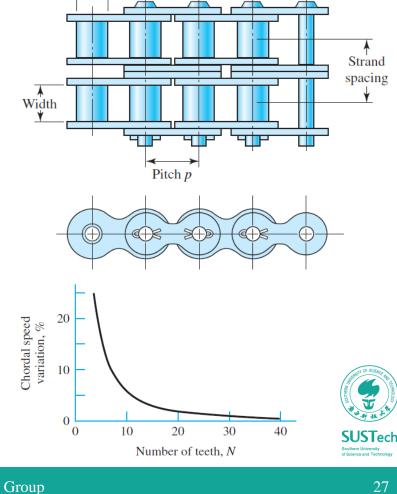
Southern University of Science and Technolog

Characteristics of Timing Belts

- Made of a rubberized fabric coated with a nylon fabric, and has steel wire within to take the tension load.
- Has teeth that fit into grooves cut on the periphery of the pulleys.
- *Does not stretch appreciably or slip* and consequently transmits power at a constant angular-velocity ratio.
- No initial tension is needed.
- Such belts can operate over a very *wide range of speeds*, have efficiencies in the range of 97 to 99 percent, require no *lubrication*, and are *quieter* than chain drives.
- There is no chordal-speed variation, as in chain drives, and so they are an attractive solution *for precision-drive requirements*.

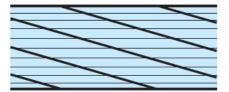

AncoraSIR.com

12/11/2019


SI JSTech

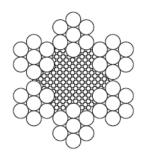
Roller Chain

- **Basic** features ٠
 - a constant ratio, since no slippage or creep is ٠ involved;
 - long life •
 - the ability to drive a number of shafts from a ٠ single source of power.



Roller diameter

Wire Rope


- The regular lay
 - Has the wire twisted in one direction to form the strands, and the strands twisted in the opposite direction to form the rope.
 - In the completed rope the visible wires are approximately parallel to the axis of the rope.
 - Regular-lay ropes do not kink or untwist and are easy to handle.
- Lang-lay ropes
 - Have the wires in the strand and the strands in the rope twisted in the same direction, and hence the outer wires run diagonally across the axis of the rope.
 - More resistant to abrasive wear and failure due to fatigue than are regular-lay ropes, but they are more likely to kink and untwist.

(a) Regular lay

(b) Lang lay

(c) Section of 6×7 rope

AncoraSIR.com

12/11/2019

Flexible Shafts

Transmit motion or power around corners

- By winding several layers of wire around a central core
- *The power-drive shaft* for the transmission of power in a single direction
 - Rotation should be in a direction such that the outer layer is wound up
- *The remote-control or manual-control shaft* for the transmission of motion in either direction.
- The torsional deflection is approximately the same for either direction of rotation AncoraSIR.com

Mandre Last Layer (4 Wires) (7 Wires) (a)

Next class

- Lab for Group 1: Design Consultation
- Friday 0800-1000, Dec 13
- Room 412, 5 Wisdom Valley
- **Discussion for Group 2**: Design Consultation
- Friday 0800-1000, Dec 13
- Room 202, 1 Lychee Park

Thank you!

Song Chaoyang (songcy@sustech.edu.cn)

- Xiao Xiaochuan (<u>xiaoxc@sustech.edu.cn</u>)
- Yu Chengming (<u>11930324@mail.sustech.edu.cn</u>)
- Zhu Wenpei (<u>11930368@mail.sustech.edu.cn</u>)
- Guo Ning (<u>11930729@mail.sustech.edu.cn</u>)

