ME303 Introduction to Mechanical Design

Lecture 14 Mechanical Springs

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

Agenda

Week 13, Wednesday, Dec 4, 2019

- Stresses in Helical Springs
- Deflection of Helical Springs
- Compression Springs
- Stability
- Spring Materials
- Helical Compression Spring Design for Static Service
- Critical Frequency of Helical Springs
- Fatigue Loading of Helical Compression Springs
- Helical Compression Spring Design for Fatigue Loading
- Extension Springs
- Helical Coil Torsion Springs
- Belleville Springs
- Miscellaneous Springs

Mechanical Springs

- Exert force
- Provide flexibility
- Store or absorb energy
- Helical coil spring with round wire
 - Equilibrium forces at cut section anywhere in the body of the spring indicates direct shear and torsion.

Stresses in Helical Springs

AncoraSIR.com

12/11/2019

Curvature Effect

Stress concentration type of effect on inner fiber due to curvature

- Can be ignored for static, ductile conditions due to localized cold-working
- Can account for effect by replacing K_s with Wahl factor or Bergsträsser factor (order of 1% difference) which account for both direct shear and curvature effect

$$K_W = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}$$
$$K_B = \frac{4C + 2}{4C - 3}$$
$$\tau = K_B \frac{8FD}{\pi d^3}$$

 $K_s = \frac{2C+1}{2C}$

Cancelling the curvature effect to isolate the curvature factor

$$K_c = \frac{K_B}{K_s} = \frac{2C(4C+2)}{(4C-3)(2C+1)}$$

Deflection of Helical Springs

Total Strain Energy for a Helical Spring = Torsional + Shear

 $U = \frac{T^2 l}{2GJ} + \frac{F^2 l}{2AG}$ Use Castigliano's method to relate force and deflection $U = \frac{4F^2D^3N}{d^4G} + \frac{2F^2DN}{d^2G} \qquad N = N_a = \text{number of active coils}$ $U = \frac{4F^2D^3N}{d^4G} + \frac{2F^2DN}{d^2G} \qquad N = N_a = \text{number of active coils}$ Direct computation $y = \frac{\partial U}{\partial F} = \frac{8FD^3N}{d^4C} + \frac{4FDN}{d^2C}$ (estimation) of spring rate using geometric parameters C = D/d, $y = \frac{8FD^3N}{d^4G} \left(1 + \frac{1}{2C^2}\right) \approx \frac{8FD^3N}{d^4G}$ using georetric using g

Compression Springs

Four Types of Common Spring End

Compression Springs With Different Ends

Formulas

	Type of Spring Ends				
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground	
End coils, N_e	0	1	2	2	
Total coils, N_t	N _a	$N_a + 1$	$N_a + 2$	$N_a + 2$	
Free length, L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$	
Solid length, L_s	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t	
Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$	

 N_a is the number of active coils

Set Removal or Presetting

A process used in manufacturing a spring to induce useful residual stresses

- The spring is made longer than needed, then compressed to solid height, intentionally exceeding the yield strength.
- This operation sets the spring to the required final free length.
- Yielding induces residual stresses opposite in direction to those induced in service.
- 10 to 30 percent of the initial free length should be removed.
- Set removal is not recommended when springs are subject to fatigue.

Critical Deflection for Stability

When the deflection exceeds the critical deflection

• Buckling type of instability can occur in compression springs when the deflection exceeds y_{cr}

12/11/2019

End-Condition Constant

It accounts for the way in which the ends of the spring are supported.

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

*Ends supported by flat surfaces must be squared and ground.

elastic constants $\lambda_{\text{eff}} = \frac{\alpha L_0}{D}$

Absolute Stability

• Absolute stability occurs when

$$C'_2 / \lambda_{\rm eff}^2 > 1$$

$$y_{\rm cr} = L_0 C_1' \left[1 - \left(1 - \frac{C_2'}{\lambda_{\rm eff}^2} \right)^{1/2} \right]$$

• This results in the condition for absolute stability

$$L_0 < \frac{\pi D}{\alpha} \left[\frac{2(E-G)}{2G+E} \right]^{1/2}$$

• For steels, this turns out to be

$$L_0 < 2.63 \frac{D}{\alpha}$$

Spring Materials

Some Common Spring Steels

- Hard-drawn wire (0.60-0.70C)
 - Cheapest general-purpose
 - Use only where life, accuracy, and deflection are not too important
- Oil-tempered wire (0.60-0.70C)
 - General-purpose
 - Heat treated for greater strength and uniformity of properties
 - Often used for larger diameter spring wire

- Music wire (0.80-0.95C)
 - Higher carbon for higher strength
 - Best, toughest, and most widely used for small springs
 - Good for fatigue
- Chrome-vanadium
 - Popular alloy spring steel
 - Higher strengths than plain carbon steels
 - Good for fatigue, shock, and impact
- Chrome-silicon
 - Good for high stresses, long fatigue
 life, and shock
 SUSTech

12/11/2019

Strength of Spring Materials

With small wire diameters, strength is a function of diameter.

- Tensile strength vs. wire diameter is almost a straight line on log-log scale.
- The equation of this line is $S_{ut} = \frac{A}{d^m}$, where A is the intercept and m is the slope.
- For common spring steels

Material	ASTM No.	Exponent m	Diameter, in	A, kpsi•in ^m	Diameter, mm	A, MPa · mm ^m	Relative Cost of Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire ^{\dagger}	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0
Chrome-vanadium wire [§]	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire"	A401	0.108	0.063-0.375	202	1.6-9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3–2.5	1867	7.6–11
		0.263	0.10-0.20	128	2.5–5	2065	
		0.478	0.20-0.40	90	5-10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2–7.5	932	

Estimating Torsional Yield Strength

Since helical springs experience shear stress, shear yield strength is needed.

- If actual data is not available, estimate from tensile strength
- Assume yield strength is between 60-90% of tensile strength

$$0.6S_{ut} \le S_{sv} \le 0.9S_{ut}$$

• Assume the distortion energy theory can be employed to relate the shear strength to the normal strength.

$$S_{sy} = 0.577S_y$$

• This results in $0.35S_{ut} \le S_{sy} \le 0.52S_{ut}$

Mechanical Properties of Some Spring Wires

	Elastic Percent	Limit, t of <i>S</i>	Diameter		E	C	;
Material	Tension	Torsion	d, in	Mpsi	GPa	Mpsi	GPa
Music wire A228	65-75	45-60	< 0.032	29.5	203.4	12.0	82.7
			0.033-0.063	29.0	200	11.85	81.7
			0.064-0.125	28.5	196.5	11.75	81.0
			>0.125	28.0	193	11.6	80.0
HD spring A227	60-70	45-55	< 0.032	28.8	198.6	11.7	80.7
			0.033-0.063	28.7	197.9	11.6	80.0
			0.064-0.125	28.6	197.2	11.5	79.3
			>0.125	28.5	196.5	11.4	78.6
Oil tempered A239	85–90	45-50		28.5	196.5	11.2	77.2
Valve spring A230	85–90	50-60		29.5	203.4	11.2	77.2
Chrome-vanadium A231	88–93	65-75		29.5	203.4	11.2	77.2
A232	88–93			29.5	203.4	11.2	77.2
Chrome-silicon A401	85–93	65-75		29.5	203.4	11.2	77.2
Stainless steel							
A313*	65-75	45-55		28	193	10	69.0
17-7PH	75-80	55-60		29.5	208.4	11	75.8
414	65-70	42-55		29	200	11.2	77.2
420	65-75	45-55		29	200	11.2	77.2

12/11/2019

Maximum Allowable Torsional Stresses

For Helical Compression Springs in Static Applications

	Maximum Percent of Tensile Strength		
Material	Before Set Removed (includes K _W or K _B)	After Set Removed (includes K _s)	
Music wire and cold- drawn carbon steel	45	60–70	
Hardened and tempered carbon and low-alloy steel	50	65–75	
Austenitic stainless steels	35	55–65	
Nonferrous alloys	35	55–65	

Critical Frequency of Helical Springs

When one end of a spring is displaced rapidly, a wave called a spring surge travels down the spring.

- If the other end is fixed, the wave can reflect back.
- If the wave frequency is near the natural frequency of the spring, resonance may occur resulting in extremely high stresses.
- Catastrophic failure may occur, as shown in this valve-spring from an over-revved engine.
 AncoraSIR.com

Critical Frequency of Helical Springs

When one end of a spring is displaced rapidly, a wave called a spring surge travels down the spring.

• The governing equation is the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{W}{kgl^2} \frac{\partial^2 u}{\partial t^2}$$

where k = spring rate

- g = acceleration due to gravity
- l =length of spring
- W = weight of spring
 - x =coordinate along length of spring
 - u = motion of any particle at distance x

Critical Frequency of Helical Springs

When one end of a spring is displaced rapidly, a wave called a spring surge travels down the spring.

• The solution to this equation is harmonic and depends on the given physical properties as well as the end conditions.

$$\omega = m\pi \sqrt{\frac{kg}{W}} \qquad m = 1, 2, 3, \dots$$

- In cycles per second, or hertz, $f = \frac{1}{2} \sqrt{\frac{kg}{W}}$
- With one end against a flat plate and the other end free, $f = \frac{1}{4} \sqrt{\frac{kg}{W}}$
- The weight of a helical spring is $W = AL\gamma = \frac{\pi d^2}{4} (\pi DN_a)(\gamma) = \frac{\pi^2 d^2 DN_a \gamma}{4}$
- The fundamental critical frequency should be greater than 15 to 20 times the frequency of the force or motion of the spring.
- If necessary, redesign the spring to increase *k* or decrease *W*.

Fatigue Loading of Helical Compression Springs

Size, material, and tensile strength have no effect on the endurance limits of spring steels in sizes under 10 mm.

• Testing found the endurance strength components for infinite life to be

Unpeened:

$$S_{sa} = 35 \text{ kpsi} (241 \text{ MPa})$$
 $S_{sm} = 55 \text{ kpsi} (379 \text{ MPa})$

Peened:

 $S_{sa} = 57.5 \text{ kpsi} (398 \text{ MPa})$ $S_{sm} = 77.5 \text{ kpsi} (534 \text{ MPa})$

• These constant values are used with Gerber or Goodman failure criteria to find the endurance limit.

Fatigue Loading of Helical Compression Springs

Size, material, and tensile strength have no effect on the endurance limits of spring steels in sizes under 10 mm.

• For example, with an unpeened spring with $S_{su} = 211.5$ kpsi, the Gerber ordinate intercept for shear, from Eq. (6-42), is

$$S_{se} = \frac{S_{sa}}{1 - \left(\frac{S_{sm}}{S_{su}}\right)^2} = \frac{35}{1 - \left(\frac{55}{211.5}\right)^2} = 37.5 \text{ kpsi}$$

- For the Goodman criterion, it would be $S_{se} = 47.3$ kpsi.
- Each possible wire size would change the endurance limit since S_{su} is a function of wire size.
- It has been found that for polished, notch-free, cylindrical specimens subjected to torsional shear stress, the maximum alternating stress that may be imposed is constant and independent of the mean stress.
 - Many compression springs approach these conditions.
 - This failure criterion is known as the *Sines failure criterion*.

Helical Compression Spring

Design for Fatigue Loading

• From the standard approach, the alternating and midrange forces are

$$F_a = \frac{F_{\text{max}} - F_{\text{min}}}{2}$$

$$F_m = \frac{F_{\max} + F_{\min}}{2}$$

• The alternating and midrange stresses are

$$\tau_a = K_B \frac{8F_a D}{\pi d^3}$$

$$\tau_m = K_B \frac{8F_m D}{\pi d^3}$$

Extension Springs

Extension springs are similar to compression springs within the body of the spring.

• Hooks are needed at the ends of the springs to apply tensile loads

(a) Machine half loop-open

(b) Raised hook

Stress in the Hook

• In a typical hook, a critical stress location is at point A, where there is bending and axial loading.

$$\sigma_A = F\left[(K)_A \frac{16D}{\pi d^3} + \frac{4}{\pi d^2}\right]$$

a bending stress-correction factor for curvature

$$(K)_A = \frac{4C_1^2 - C_1 - 1}{4C_1(C_1 - 1)} \qquad C_1 = \frac{2r_1}{d}$$

• Another potentially critical stress location is at point B, where there is primarily torsion.

$$\tau_B = (K)_B \frac{8FD}{\pi d^3}$$
 $(K)_B = \frac{4C_2 - 1}{4C_2 - 4}$ $C_2 = \frac{2r_2}{d}$

AncoraSIR.com

SUSTech

Close-wound Extension Springs

Extension springs are often made with coils in contact with one another, called close-wound.

- Including some initial tension in close-wound springs helps hold the free length more accurately. $F = F_i + ky$
 - The load-deflection curve is offset by this initial tension F_i
- The free length is measured inside the end hooks

$$L_0 = 2(D - d) + (N_b + 1)d = (2C - 1 + N_b)d$$

The hooks contribute to the spring rate

Helical Coil Torsion Spring

When a helical coil spring is subjected to end torsion, it is called a *torsion spring*.

- The wire in a torsion spring is in bending.
- The springs are designed to wind tighter in service.
 - As the applied torque increases, the inside diameter of the coil decreases.
- Care must be taken so that the coils do not interfere with the pin, rod, or arbor.
- The bending mode in the coil might seem to invite squareor rectangular-cross section wire,
 - but cost, range of materials, and availability discourage its use.

12/11/2019

Belleville Springs

A coned-disk spring with a non-linear spring constant

• Occupies only a small space.

 Variation in the *h/t* ratio will produce a wide variety of load-deflection curve shapes.

Miscellaneous Springs

Constant-Force Springs | Volute Spring

- The extension spring shown is made of slightly curved strip steel, not flat. The fore required to uncoil it remains constant, thus *Constant-Force Spring*.
- A *Volute Spring* is a conical spring made from a wide, thin strip, or "flat", of material wound on the flat so that the coils fit inside one another.

Project 3: Shaft Design

• Online at course website

Next class

- Lab for Group 2: Design Consultation
- Friday 0800-1000, Dec 6
- Room 412, 5 Wisdom Valley
- **Discussion for Group 1**: Design Consultation
- Friday 0800-1000, Dec 6
- Room 202, 1 Lychee Park

Thank you!

Song Chaoyang (songcy@sustech.edu.cn)

- Xiao Xiaochuan (<u>xiaoxc@sustech.edu.cn</u>)
- Yu Chengming (<u>11930324@mail.sustech.edu.cn</u>)
- Zhu Wenpei (<u>11930368@mail.sustech.edu.cn</u>)
- Guo Ning (<u>11930729@mail.sustech.edu.cn</u>)

