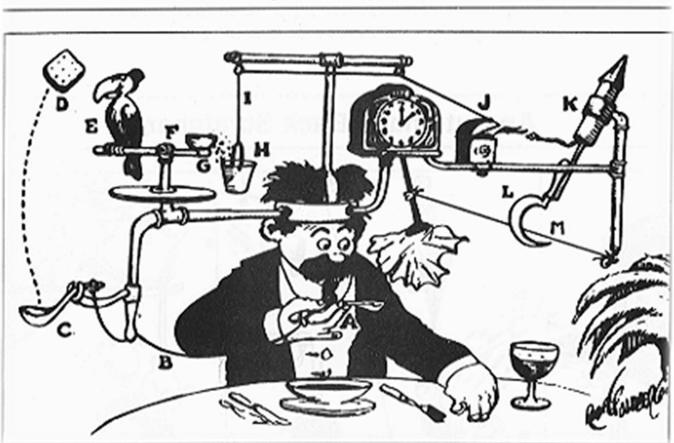
ME303 Introduction to Mechanical Design

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering


songcy@sustech.edu.cn

Rube Goldberg's Machine

Unnecessarily Complicated Design for a Simple Task

Self-Operating Napkin

https://en.wikipedia.org/wiki/Rube_Goldberg_machine

Agenda

Week 01, Wednesday, Sep 04, 2019

- Course Introduction
- Mechanical Engineering Design
- Computer-Aided Design & Engineering
- Design Engineer's Professional Responsibility
- Standards, Codes & Economics
- Safety & Product Liability
- Design Factor & Factor of Safety
- Reliability & Probability of Failure
- Relating Design Factor to Reliability
- Design Requirements vs. Design Specifications

Teaching Team

Design Lab website: https://designlab.ancorasir.com/

 Course Instructor Prof. Song Chaoyang (Email is preferred) songcy@sustech.edu.cn

- Teaching Assistants Xiao Xiaochuan xiaoxc@sustech.edu.cn
- Office Room 606, 7 Innovation Park

AncoraSIR.com

Course Website

Design Lab

Course Content

Will be posted on the Instructor's website

THE BIONICDL LAB Bionic Design + Robot Learning

NEWS RESEARCH

PUBLICATIONS

PEOPLE

LABORATORY

TEACHING RESOURCES

ME303 INTRODUCTION TO MECHANICAL DESIGN, AUTUMN 2019

Student Groups

Due to the sudden increase in students, we have to split the class into two groups for the lab session, where the students in each group will take turns to do the lab experiments and group discussions.

Time and Place

- Lectures (for both Group 1 and Group 2):
 - Week 1: Wednesday 1400-1600 @ Room 206, 2 Lychee Park
 - Week 1: Friday 0800-1000 @ Room 202, 1 Lychee Park
 - Week 2-14: Wednesday 1400-1600
 - · Location: Room 206, 2 Lychee Park
- Discussions:
- Group 1: Weeks 3, 5, 7, 9, 11, 13, 15
- Group 2: Weeks 4, 6, 8, 10, 12, 14, 16
- Friday 0800-1000 @ Room 412, 5 Wisdom Valley
- Laboratories :
 - Group 1: Weeks 4, 6, 8, 10, 12, 14, 16
 - Group 2: Weeks 3, 5, 7, 9, 11, 13, 15
 - Friday 0800-1000 @ Room 202, 1 Lychee Park

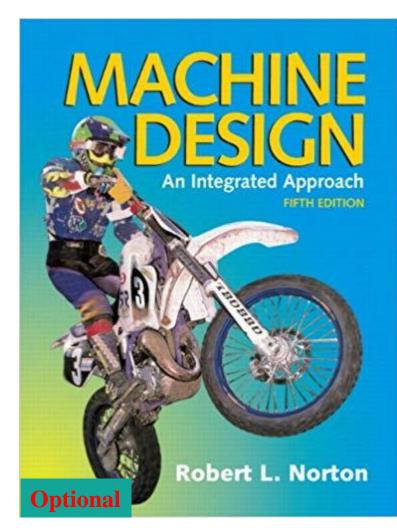
Bionic Design & Learning Group

9/5/2019

Textbooks

Limited copies of reprinted chapters can be borrowed from the TA.

J. Keith Nisbett


Shigley's

Tenth Edition Mechanical Engineering Design

Required

AncoraSIR.com

Student Groups, Time & Place

Lecture (Wed) + Laboratories (Fri) + Discussions (Fri)

• Group 1 + Group 2

• Due to the sudden increase in students, we have to split the class into two groups for the lab session, where the students in each group will take turns to do the lab experiments and group discussions.

• Lectures (for both Group 1 and Group 2):

- Week 1: Wednesday 1400-1600 @ Room 206, 2 Lychee Park
- Week 1: Friday 0800-1000 @ Room 202, 1 Lychee Park
- Week 2-14: Wednesday 1400-1600
- Location: Room 206, 2 Lychee Park

• Discussions:

- Group 1: Weeks 3, 5, 7, 9, 11, 13, 15
- Group 2: Weeks 4, 6, 8, 10, 12, 14, 16
- Friday 0800-1000 @ Room 202, 1 Lychee Park

• Laboratories:

- Group 1: Weeks 4, 6, 8, 10, 12, 14, 16
- Group 2: Weeks 3, 5, 7, 9, 11, 13, 15
- Friday 0800-1000 @ Room 412, 5 Wisdom Valley

AncoraSIR.com

Please refer to the course webpage for any change of details (bottom of the page)

Lecture Schedule

Wednesday 1400-1600 @ Room 206, 2 Lychee Park

• Engineering Basics

- Introduction to Mechanical Design
- Material & Process
- Kinematics & Load Determination
- Stress, Strain, Deflection & Stiffness

Failure Prevention

- Failures from Static Loading
- Failures from Variable Loading
- Gear Components
 - Gears in General
 - Spur, Helical, Bevel & Worm Gears
- Joint Components
 - Non-permanent Joints (Screws, Fasteners)
 - Permanent Joints (Welding, Bonding)

• Various Components

- Shafts, Keys, Couplings & Clutches
- Brakes, Flywheels, Bearings & Lubrications

• Flexible Components

- Mechanical Springs
- Flexible Mechanical Components

• Special Topics

- Power Transmission Case Study
- Mechanical Design for Advanced Robotics

Lab & Discussion Schedules

Friday 0800-1000 @ Room 412, 5 Wisdom Valley / Room 202, 1 Lychee Park

Common Mechanism

- Planar Mechanisms I & II
- Planar Mechanisms III & IV
- Gear Transmission

• Dual-output Robotic Joint

- Design & Consultation @ Room 202, 1 Lychee Park
- Fabrication & Testing @ Room 412, 5 Wisdom Valley
- Mid-term report & presentation in Weeks 8 & 9
- Final report & presentation in Week 16

• Week 16 Presentation

- 5 min video presentation
- A 20-page engineering report
- Design Competition
- Live Q&A

To design and build a robotic joint that has

- Two rotary outputs
- Highest torque density against weight
- Highest torque density against volume
- Least BOM cost under 5K RMB

<u>Please contact Mr. Xiao Xiaochuan for safety,</u> <u>training, purchasing & fabrication details</u>

Other Things

You should always keep in mind.

• Grading

• 20% Lab + 20% Assignments + 30% Final Exam + 30% Final Presentation

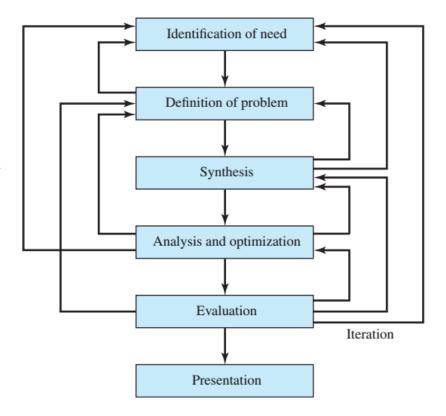
• Late Assignment Policy

• Each student is granted four unpenalized late days for the semester. Assignments can be submitted in no more than four days late and will receive a 25% penalty for each day late (excluding unpenalized late days used). Homework are due at 3 PM on the due date, and each late day extends the deadline by exactly 24 hours. All assignments, labs and presentations must be done to pass the course.

• Academic Integrity

• This course follows the SUSTech Code of Academic Integrity. Each student in this course is expected to abide by the SUSTech Code of Academic Integrity. Any work submitted by a student in this course for academic credit will be the student's own work. Violations of the rules (e.g., cheating, copying, non-approved, collaborations) will not be tolerated.

Mechanical Engineering Design

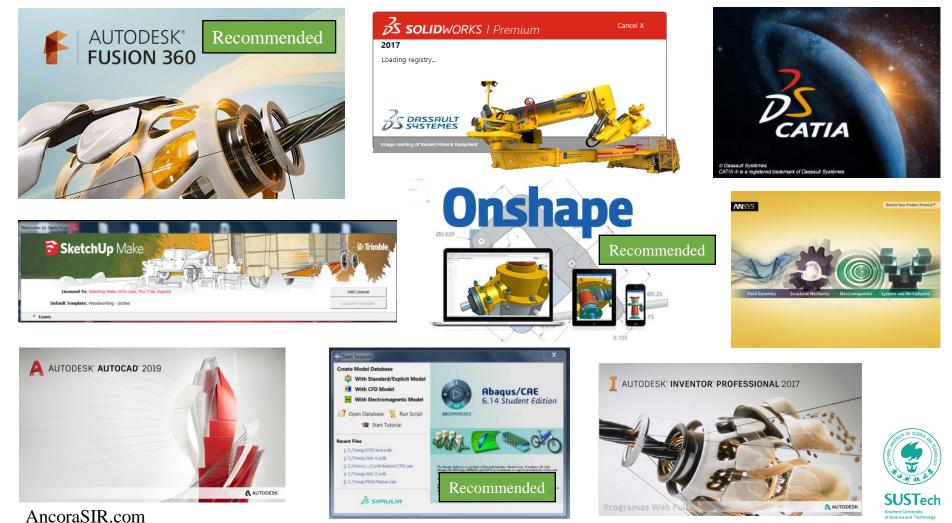

Design | Engineering Design | Mechanical Engineering Design

- A plan to make a machine:
 - A system of elements
 - Specifically arranged
 - For motion/energy transmission

Design Considerations:

- 1 Functionality
- 2 Strength/stress
- 3 Distortion/deflection/stiffness
- 4 Wear
- 5 Corrosion
- 6 Safety
- 7 Reliability
- 8 Manufacturability
- 9 Utility
- 10 Cost
- 11 Friction
- 12 Weight
- 13 Life

- 14 Noise
 - 5 Styling
- 6 Shape
- 17 Size
- 8 Control
- 9 Thermal properties
- 20 Surface
- 21 Lubrication
- 22 Marketability
- 23 Maintenance
- 24 Volume
- 25 Liability
- 6 Remanufacturing/resource recovery


Feedbacks & Iterations

AncoraSIR.com

Computer-Aided Design & Engineering

The increasingly important role of the computer and internet

Bionic Design & Learning Group

Design Engineer's Professional Responsibility

Communication is more important than you thought

- Understand the problem
- Identify the knowns
- Identify the unknowns and formulate the solution strategy
- State all assumptions and decisions
- Analyze the problem
- Evaluate your solution
- Present your solution

Engineers' Creed from the National Society of Professional Engineers (NSPE)

As a Professional Engineer I dedicate my professional knowledge and skill to the advancement and betterment of human welfare. I pledge:

To give the utmost of performance;

To participate in none but honest enterprise;

To live and work according to the laws of man and the highest standards of professional conduct;

To place service before profit, the honor and standing of the profession before personal advantage, and the public welfare above all other considerations.

In humility and with need for Divine Guidance, I make this pledge.

Standards and Codes

Just another way of professional communication

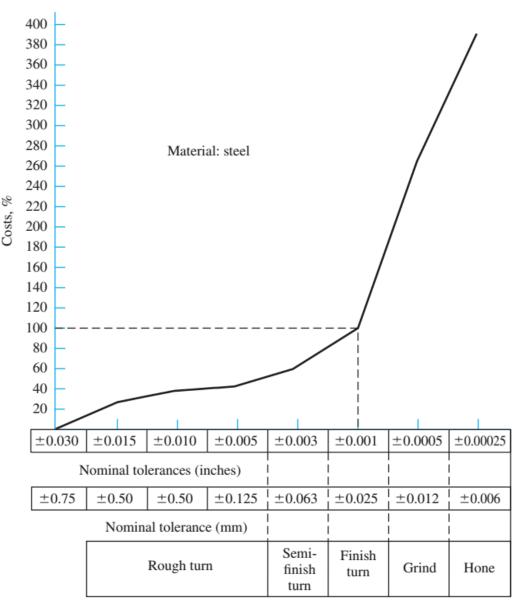
- Standard
 - To achieve uniformity, efficiency, and specific quality
 - To limit the multitude of variations
- Code
 - Purposely developed process, i.e. analysis, design, manufacture
 - To achieve certain safety, efficiency, performance, or quality

Organizations

- Chinese Mechanical Engineering Society (CMES)
- China General Machine Components Industry Association (CMCA)
- International Standards Organization (ISO)
- American Society of Mechanical Engineers (ASME)
- American National Standards Institute (ANSI)
- Institute of Mechanical Engineers (IMechE)
- National Institute for Standards and Technology (NIST)
- Society of Automotive Engineers (SAE)

Economics

Love & Hate


Tolerances

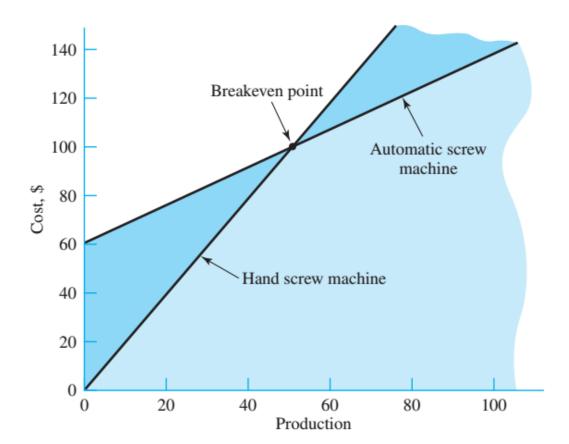
- Perhaps the most significant effects on cost among design specifications
- Close tolerances => additional steps in processing and inspection, or impractical to produce
- Large tolerances => higher production rates with significantly lower cost, less rejection rates and easier assembly

But why iPhone is still so expensive?

• The changing roles of tolerances, manufacturing process, surface finish for consumer electronics.

AncoraSIR.com

Machining operations

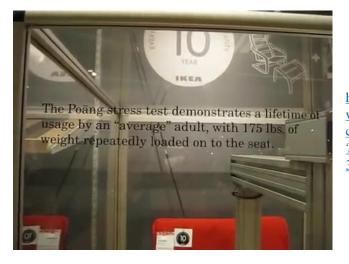

When reality meets your design ...

Breakeven point & Cost estimates

i.e. when machines replace manual labor

But how would I know the actual cost of a specific design?

- Scenario specific comparison is more useful
 - Moore's law
 - # of parts
 - Cost by weight, area, volume, horsepower, toque, speed, etc.
- Various metrics can be used to establish a comparison
- Product Design and Development



Safety & Product Liability

Careful review to eliminate excessive promises with adequate warnings and instruction of use

- Strict Liability (applicable for US engineers)
 - The manufacturer of an article is liable for any damage or harm that results because of a defect.
 - No mater if the manufacturer knew about the defect
 - Or could have known about it
- Best approach to prevention
 - Good engineering in **analysis and design**, **quality control**, and **comprehensive testing**

https://ww w.youtube. com/watch ?v=FVAOI 334s5k

https://w ww.youtu be.com/w atch?v=k P9PZYjV wUo

SUSTech

FAMILY NAME	MODEL
ALESUND	4-drawers
ALVESTA	5-drawers
ANEBODA	3-drawers, 5-drawers
ANGUS	chest of drawers
ÅNES	4-drawers
ARUP	4-drawers, 6-drawers
ASKEDAL	4-drawers, 6-drawers
ASKVOLL	5-drawers
ASPELUND	2-drawers, 3-drawers, 4-drawers
BALSTAR	6-drawers, 10-drawers
BANKERYD	3-drawers, 5-drawers
BERGSMO	8-drawers
BIALITT	3-drawers, 6-drawers
BIRKELAND	3-drawers, 6-drawers
BJÖRKVALLA	5-drawers, 6-drawers
BJÖRN	4-drawers, 6-drawers, 8-drawers
BLIMP	chest of drawers
BOJ	chest of drawers
BOKSTA	6-drawers

http://www.scmp.com/news/world/united-statescanada/article/1982934/ikea-recalls-millions-malm-dressers-us-andcanada

IKEA Chests of Drawers/Dressers

IKEA chests and dressers in the chart below, in addition to the MALM 3-, 4-, 5- and 6-drawer units, that were manufactured before June 2016 are subject to recall To determine whether your unit was manufactured before June 2016, check the product label on the inside of the top or side frame of the unit for a date code lower than "1622":

Product Label:

FAMILY NAME	MODEL	FAMILY
BRETT	3-drawers	NATURA
BRIMNES	2-drawers, 3-drawers, 4-drawers	NARVIK
BRUSALI	3-drawers, 4-drawers	1
BUSUNGE	2-drawers	NORDLI
DIKTAD	changing table/chest of drawers	NORDNE
EDLAND	2-drawers, 3-drawers, 5-drawers, 6-drawers	NORNĀS
ELIS	chest of drawers	NYVOLL
ENGAN	2-drawers/2-door, 4-drawers	OTTENB
ESKIL	5-drawers	RANVIK
FJELL	4-drawers	RAKKE
FJORD	3-drawers, 5-drawers, 6-drawers, 7-drawers, 8-drawers	RAMBER
FLATEN	3-drawers, 5-drawers, 6-drawers, 7-drawers	RODD
FRIDOLIN	7-drawers, 11-drawers	ROBIN
GUTE	4-drawers, 6-drawers, 8-drawers, 10-drawers	RUSTIK
GRANAS	4-drawers, 6-drawers	SALA
HADDAL	3-drawers, 4 drawers	SANDEF.
HAJDEBY	chest of drawers	STOCKH
HEMNES	2-drawers/1 shelf, 3-drawers, 5-drawers, 6-drawers stained	STRAND
	pine, mirror chest	STUVA
HENSVIK	3-drawers	SUNDVI
HERRESTAD	4 drawers	SVEIO
HOPEN	4-drawers, 6-drawers, 8-drawers	STAVAN
HOSTELAND	4-drawers, 6-drawers	SYDVAS
HOLLEBY	chest of drawers	TARVA
HOVDA	double chest	TASSA
HURDAL	3-drawers, 5-drawers (22 inches wide)	TRANDU
KABIN	4 drawers, 6 drawers, 8 drawers	
KIRKENES	5 drawers	TORE
KNOT	3-drawers	TOVIK
KOPPANG	3-drawers	TRANDU
KUSK	3-drawers	TROGEN
KULLEN	5-drawers	TROFAS
KURS	3-drawers, 4-drawers, 6 drawers	TRONDH
KVIBY	4-drawers	TRYSIL
LEKSVIK	2-drawers, 4-drawers, 5-drawers, 6-drawers, 7-drawers	TYSSED
LO	3-drawers	UNDRED
LOMEN	3-drawers, 2 drawers/2 door chest	VARDE
MAC	5-drawers 6-drawers 8-drawers	VALLVI
MAST	6-drawers	VAJER
MAMMUT	3-drawers, 4-drawers, chest of drawers	VESTBY
MANDAL	3-drawers, 4-drawers, 6-drawers	VINSTRA
MERÅKER	4-drawers, 7-drawers	VISDALE
MIDSUND	5-drawers	VOLLEN

Y NAME	MODEL	
A	4-drawers, 5-drawers	
ĸ	3-drawers chest, changing table/chest of drawers, 5 drawers, 6-	
	drawers	
I	3-drawers, 4-drawers (15,7 inches wide)	
ES	10-drawers	
S	4-drawers/2-compartments	
L	3-drawers, 6-drawers	
BY	5-drawers	
K	5-drawers	
	5-drawers	
RG	3-drawers	
	3-drawers, 5-drawers	
	3-drawers, 8-drawers	
	chest of drawers	
	3-drawers	
FJORD	5-drawers	
HOLM	4-drawers	
DA	4-drawers	
	chest of drawers	
IK	changing table/chest of drawers	
	5-drawers	
NGER	5-drawers	
ST	3-drawers, 6-drawers, 7-drawers	
	3-drawers, 5-drawers, 6-drawers	
	3-drawers	
UM	3-drawers	
	chest of drawers	
	3-drawers	
UM	6-drawers	
N	3-drawers, chest of drawers	
ST	chest of drawers	
HEIM	3-drawers, 4-drawers, 6-drawers	
	3-drawers	
DAL	4-drawers, 6-drawers	
DAL	4-drawers	
	6-drawers	
IK	3-drawers, 6-drawers	
	4-drawers, 6-drawers	
Y	chest of drawers	
LA.	3-drawers, 6-drawers	
.EN	7-drawers, 6-drawers	
N	3-drawers	

Southern University of Science and Techr

AncoraSIR.com

Design Factor & Factor of Safety

The Classical Method of Design

- The Design Factor
 - All loss-of-function modes must be analyzed
 - The mode leading to the smallest design factor governs
 - The Design Factor may change after a design is completed
 - Rounding up to a standard size for a cross section
 - Using off-the-shelf components with higher ratings instead of calculated

$$n_d = \frac{\text{loss-of-function parameter}}{\text{maximum allowable parameter}}$$

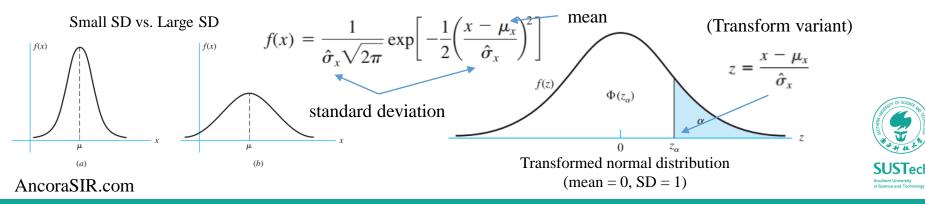
- The Factor of Design, *n*
 - Same definitions but generally differ numerically

How to know better? Test, test, test, ...

- More practical expression of design factor
 - Stress may not vary linearly with load, making it a better choice

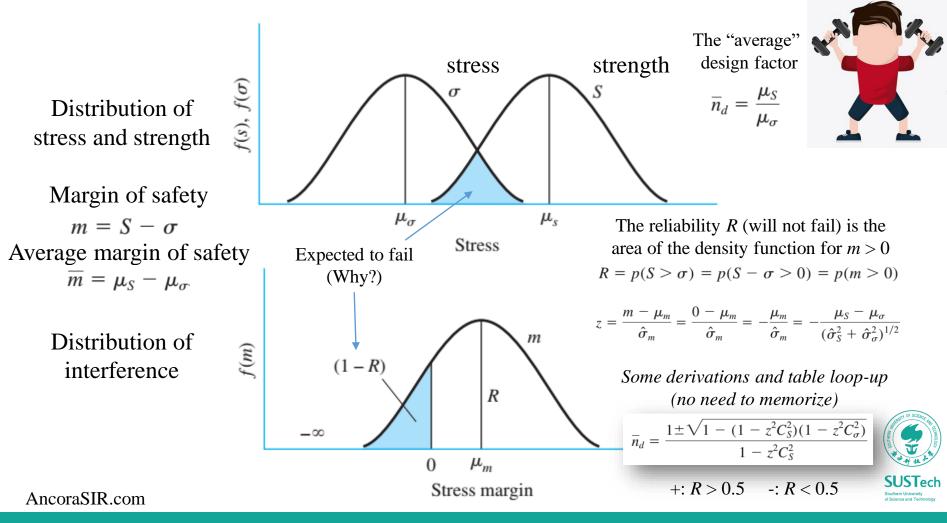
$$n_d = \frac{\text{loss-of-function strength}}{\text{allowable stress}} = \frac{S}{\sigma(\text{or }\tau)}$$

Reliability & Probability of Failure


The Reliability Method of Design

• **Designer's Task**: To make a judicious selection of materials, processes, geometry so as to achieve a specific reliability goal, i.e. R = 0.99

R=0.99 means that there is a 99% chance that the part will perform its proper function without failure.


- **Reliability**: $R = 1 p_f$
 - The statistical measure of the probability that a mechanical element will not fail in use
- Probability of Failure: *p_f*
 - Probability Density Function: the distribution of events within a given range of values.
 - Gaussian (normal) distribution: generally applicable
 - Weibull distribution: widely used in rolling-contact bearing design

Design Engineers usually look up the table for quick calculations

Relating Design Factor to Reliability

Design Factor (S) => Reliability (R)

Design Requirements vs. Design Specifications

Customer Needs vs. Engineering Designs

Design Requirements

Power to be delivered: 20 hp Input speed: 1750 rev/min Output speed: 85 rev/min Targeted for uniformly loaded applications, such as conveyor belts, blowers, and generators Output shaft and input shaft in-line Base mounted with 4 bolts Continuous operation 6-year life, with 8 hours/day, 5 days/wk Low maintenance Competitive cost Nominal operating conditions of industrialized locations Input and output shafts standard size for typical couplings

What "they" want ...

- Some are very specific
- Some, maybe ...
- Some are a bit vague

Design Specifications

Power to be delivered: 20 hp Power efficiency: >95% Steady state input speed: 1750 rev/min Maximum input speed: 2400 rev/min Steady-state output speed: 82–88 rev/min Usually low shock levels, occasional moderate shock Input and output shafts extend 4 in outside gearbox Input and output shaft diameter tolerance: ± 0.001 in Input and output shafts in-line: concentricity ± 0.005 in, alignment ± 0.001 rad Maximum allowable loads on input shaft: axial, 50 lbf; transverse, 100 lbf Maximum gearbox size: 14-in \times 14-in base, 22-in height Base mounted with 4 bolts Mounting orientation only with base on bottom 100% duty cycle

What "we" provide ...

- Engineering limitations
- Design solutions
- Measurable performances

Next class

- Lecture Topic: Material & Process
- Friday 0800-1000
- Room 202, 1 Lychee Park

The Dear Customer made a request: *I want the "Sky Blue."* A Design Engineer replied: #00008B?

Thank you!

Prof. Song Chaoyang

• Xiao Xiaochuan (<u>xiaoxc@sustech.edu.cn</u>)

