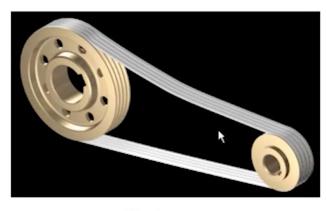
Lecture 06 Flexible Mechanical Components 第六章 挠性传动设计

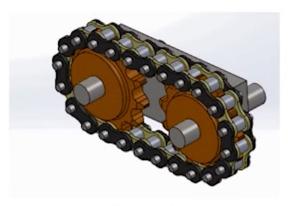
ME303 Introduction to Mechanical Design

Adapted from https://www.icourse163.org/course/HUST-1206698847

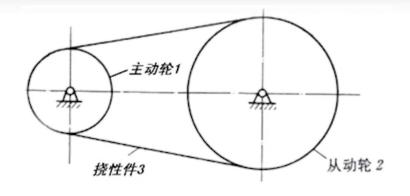
Overview of Flexible Transmission


挠性传动概述

Overview of Flexible Transmission

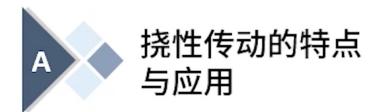

挠性传动概述

挠性传动: 具有中间挠性件的传动方式。

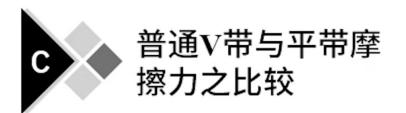

包括: 带传动、链传动和绳传动

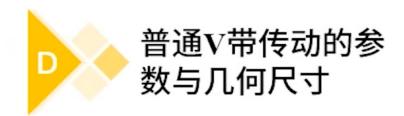
带传动

链传动

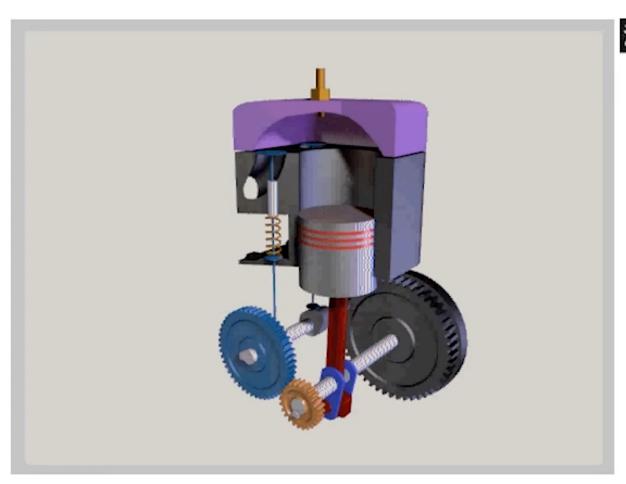


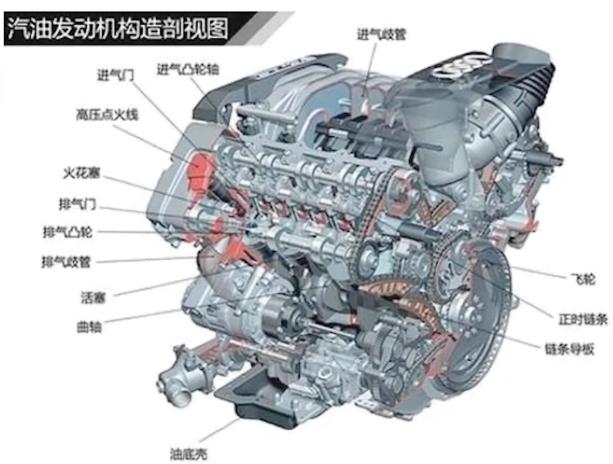
绳传动


Overview of Flexible Transmission


挠性传动概述

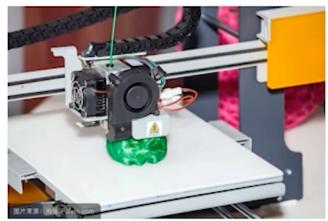
本节内容





Characteristics and Applications

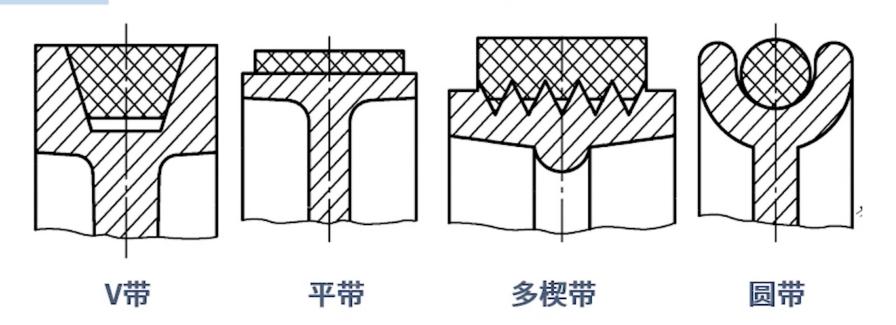
挠性传动的特点与应用


Characteristics and Applications

挠性传动的特点与应用

挠性传动的特点

- 可根据需求选择挠性件的长度,适用于中心 距较大的传动。
- 具有缓冲和吸振作用,传动较平稳。
- · 结构简单,易于制造,安装要求较低。

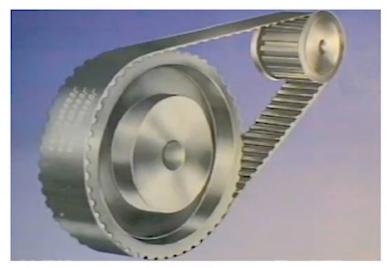


Types of Flexible Transmission

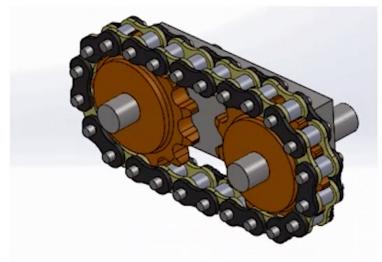
挠性传动的类型

工作原理

摩擦传动: 依靠挠性件和传动轮之间的摩擦来传递运动和动力

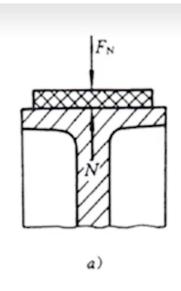

Types of Flexible Transmission

挠性传动的类型

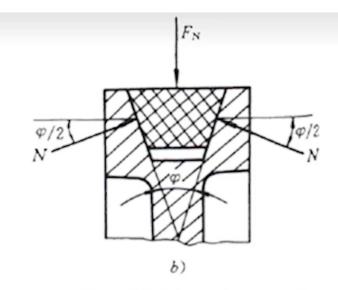

工作原理

啮合传动:

依靠挠性件和传动轮轮齿之间的啮合传递运动和动力


同步带传动

链传动


Friction Force of V-Belt and Flat Belt

平带与普通V带的摩擦力比较

平带的摩擦力为:

$$F_f = fN = fF_N$$
 $f -$ 摩擦系数

普通V带的摩擦力为:

$$F_f = 2 fN = \frac{fF_N}{\sin(\varphi/2)} = f_v F_N$$

 f_v — 当量摩擦系数,显然 $f_v > f$

相同条件下,普通V带的摩擦力大于平带,传动能力更强

Design Parameters of V-Belt

普通V带传动的参数与几何尺寸

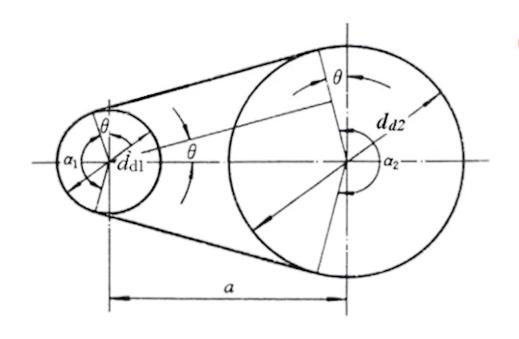
普通V带传动的参数

普通V带是标准件,七种型号: Y、Z、A、B、C、D、E

V带的基准长度 L_d :

在节线层上量得的带周长

V带轮的基准直径 d_d :


与节线相对应的带轮直径

Design Parameters of V-Belt

普通V带传动的参数与几何尺寸

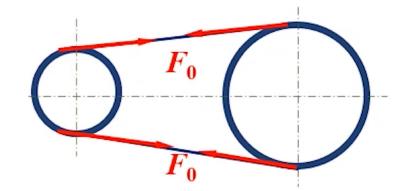
带传动几何尺寸

a - 带传动中心距 α_1 - 小带轮包角

 α_2 - 大带轮包角

 $\alpha_1 < \alpha_2$

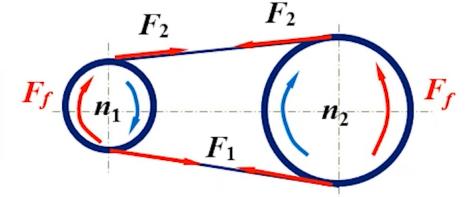
$$\alpha_1 = 180^{\circ} - \frac{d_{d2} - d_{d1}}{a} \times 57.3^{\circ}$$


怎样增大小带轮包角?

带传动的受力分析

带传动的受力分析

安装时,带必须以一定的初拉力张紧在带轮上



此时,带只受初拉力 F_0 作用

 F_f -带轮作用于带的摩擦力

由于摩擦力的作用:

紧边拉力 --

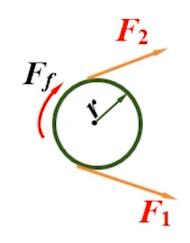
由 F_0 增加到 F_1 ;

松边拉力 --

由 F_0 减小到 F_2 。

带传动的受力分析

$$F = F_f = F_{1} - F_2$$
 F 一有效拉力,即圆周力


带是弹性体,工作后可认为其总长度不变,则:

紧边拉伸增量 = 松边拉伸减量

 \longrightarrow 紧边拉力增量 = 松边拉力减量= $\triangle F$

因此
$$F_1 = F_0 + \triangle F$$

$$F_2 = F_0 - \triangle F$$
 \rightarrow F_0 = (F_1 + F_2) / 2

带传动的受力分析

由
$$F = F_1 - F_2$$
, 得:

$$\begin{cases} F_1 - F_0 + F/2 \\ F_2 = F_0 - F/2 \end{cases}$$

带所传递的功率为

$$\begin{cases} F_1 = F_0 + F/2 \\ F_2 = F_0 - F/2 \end{cases} \qquad P = \frac{Fv}{1000} \quad kW \quad v 为带速$$

P 增大时,所需的 $F(\mathbb{D}F_f)$ 加大。但 F_f 不可能无限增大。

当要求的圆周力大于最大摩擦力时,带传动将出现<mark>打滑</mark>。

当 F_f 达到极限值 F_{flim} 时,带传动处于即将打滑的临界状态。

此时, F_1 达到最大,而 F_2 达到最小。

带传动的受力分析

欧拉(Euler)公式

带传动即将打滑时,可推出古典的柔韧体摩擦欧拉公式:

$$\frac{F_1}{F_2} = e^{f\alpha}$$

f为摩擦系数; α 为带轮包角

欧拉公式反映了带传动丧失工作能力之前,紧边、松边拉 力的最大比值

带传动的受力分析

欧拉(Euler)公式

那么:
$$F_{flim} = F_1 - F_2 = F_1 - F_1/e^{f\alpha} = F_1(1-1/e^{f\alpha})$$

 F_{flim} — 不打滑时的最大有效拉力

正常工作时,应使有效拉力 $F < F_{flim}$

将
$$F_1 = F_0 + F/2$$
代入上式: $F_{f \text{ lim}} = (F_0 + \frac{1}{2}F_{f \text{ lim}})\left(1 - \frac{1}{e^{f\alpha}}\right)$

整理后得:
$$F_{f \lim} = 2F_0 \frac{e^{f\alpha} - 1}{e^{f\alpha} + 1}$$

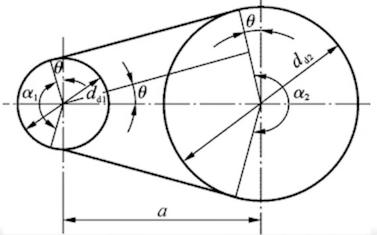
带传动的受力分析

影响最大有效拉力F的几个因素:

$$F_{f \lim} = 2F_0 \frac{e^{f\alpha} - 1}{e^{f\alpha} + 1}$$

- $F extit{与} F_0$ 成正比,增大 F_0 有利于提高带的传动能力,避免打滑。
- 但 F_0 过大,将使带发热和磨损加剧,从而缩短带的寿命。

带传动的受力分析


影响最大有效拉力F的几个因素:

$$F_{f \lim} = 2F_0 \frac{e^{f\alpha} - 1}{e^{f\alpha} + 1}$$

 $\alpha^{\uparrow} \to F^{\uparrow}$ 带所能传递的圆周力增加,传动 能力增强,故应保证小带轮的包角@1足够大。

这一要求限制了最大传动比i和最小中心距a。

$$i\uparrow \rightarrow \alpha_1 \downarrow$$

$$i\uparrow \rightarrow \alpha_1 \downarrow$$
 $a\downarrow \rightarrow \alpha_1 \downarrow$

带传动的受力分析

影响最大有效拉力F的几个因素:

$$F_{f \lim} = 2F_0 \frac{e^{f\alpha} - 1}{e^{f\alpha} + 1}$$

 $f^{\uparrow} \rightarrow F^{\uparrow}$ 传动能力增加

对于V带传动,应采用当量摩擦系数 f_v 计算

带传动的受力分析

小结

摩擦型带传动工作时,会产生紧边和松边。

有效拉力 = 紧边拉力 - 松边拉力,决定着带的传动能力。

当有效拉力超过极限摩擦力时,会发生打滑失效。

最大有效拉力与初拉力、摩擦系数、包角有关。适当增大初拉力 和摩擦系数,增大小带轮包角,可以防止打滑。

带传动的应力分析

Quiz

小问题

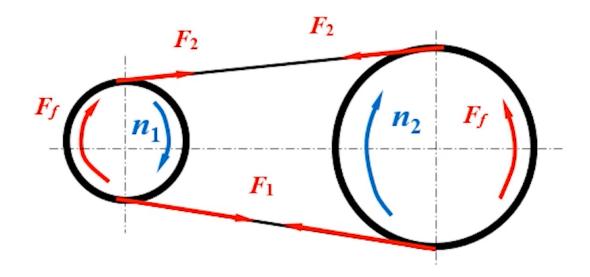
- ▲ V 带截面上受到哪几种应力?跟哪些参数有关?
- Ⅳ V带工作时截面上的应力是静应力还是 变应力?最大值是多少?

带传动的应力分析

工作时,带横截面上的应力由三部分组成:

由离心力产生的拉应力;

由弯曲产生的弯曲应力。


带传动的应力分析

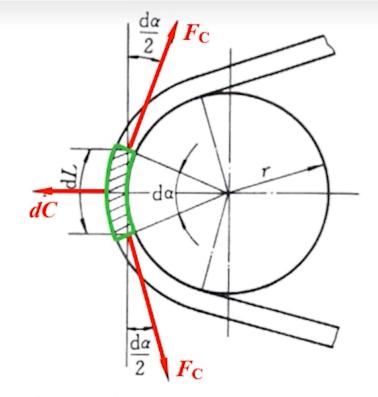
$1.拉力F_1$ 、 F_2 产生的拉应力 σ_1 、 σ_2

紧边拉应力: $\sigma_1 = F_1/A$ MPa

A 一带的横截面面积

松边拉应力: $\sigma_2 = F_2/A$ MPa

带传动的应力分析


2.离心力产生的拉应力 σ_c

带绕过带轮做圆周运动时会产生离心力。

设:作用在微单元弧段dL的离心力为dC

$$\iint dC = dm \cdot \frac{v^2}{r} = dL \cdot q \cdot \frac{v^2}{r}$$

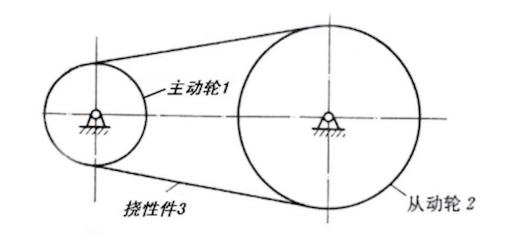
$$= (rd\alpha)q \cdot \frac{v^2}{r} = qv^2 d\alpha$$

截取微单元弧段dL 研究,其两端拉力 $F_{\rm C}$ 为离心力引起的拉力。

由水平方向力的平衡条件可知: $dC = 2F_C \sin \frac{d\alpha}{2}$

$$\because \sin \frac{d\alpha}{2} \approx \frac{d\alpha}{2}$$

带传动的应力分析

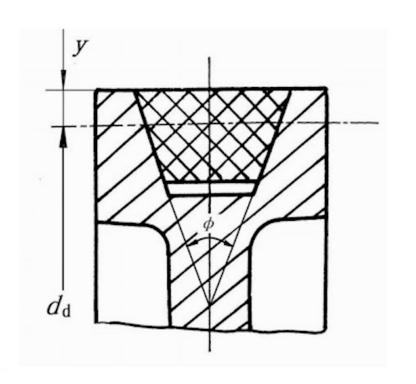

2.离心力产生的拉应力 σ_c

$$\therefore qv^2d\alpha = F_Cd\alpha$$

即:
$$F_C = qv^2$$
 N

则离心拉力 $F_{\rm C}$ 产生的拉应力为:

$$\sigma_{\rm c} = \frac{F_C}{A} = \frac{qv^2}{A}$$
 MPa


注意:虽然离心力只作用在做圆周运动的部分弧段,但其产生的离心拉力 F_{c} (或拉应力 σ_{c})却作用于带的全部,且各剖面处处相等。

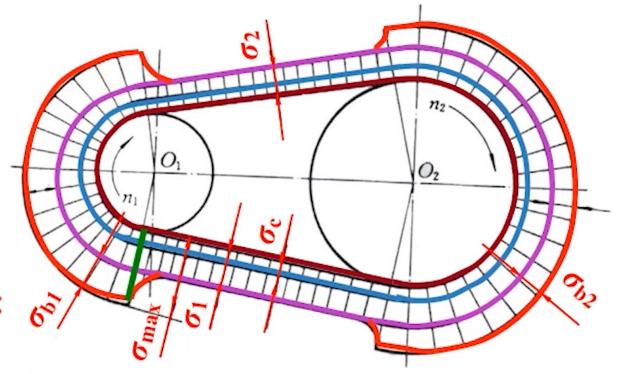
带传动的应力分析

3.带弯曲而产生的弯曲应力 $\sigma_{\rm b}$

带绕过带轮时发生弯曲,由 材料力学公式:

弯曲应力只作用在绕过带轮的那一部分带上。

带传动的应力分析


4.带横截面的应力

带横截面的应力为三部分应力之和。 各剖面的应力分布为:

$$\sigma_{\text{max}} = \sigma_{1} + \sigma_{c} + \sigma_{b1}$$

由此可知,带受变应力作用,这将使带产生疲劳破坏。

Summary

本次课小结

- 1. 工作时,带横截面上的应力由三部分组成:
 - (1) 由紧边和松边拉力 F_1 、 F_2 产生的拉应力;
 - (2) 由离心力产生的拉应力,跟带速平方成正比;
 - (3) 由弯曲产生的弯曲应力,跟带轮基准直径成反比。
- 2. 带工作时受变应力作用,可能产生疲劳破坏。

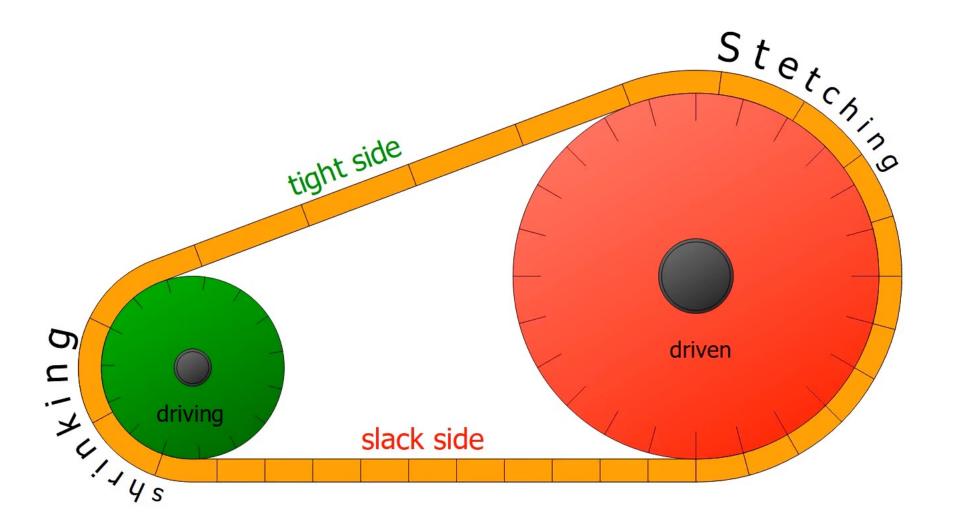
最大应力发生在紧边开始进入小带轮处:

$$\sigma_{\text{max}} = \sigma_1 + \sigma_c + \sigma_{b1}$$

Flexible Slipping in Belt Transmission

带传动的弹性滑动现象

Objectives


本次课程的目标

A 》弹性滑动产生的原因;

圆 ≫ 弹性滑动与打滑的区别;

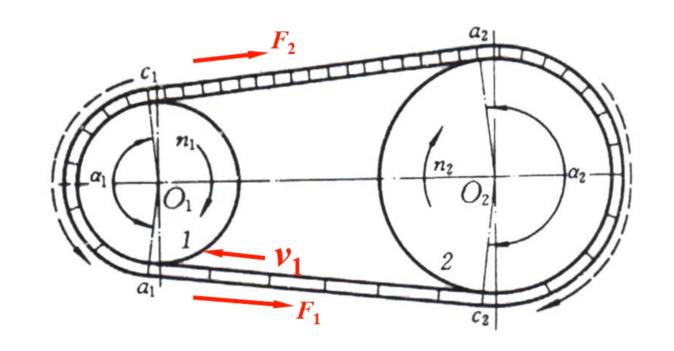
弹性滑动导致的不良后果。

Elastic Slip

弹性滑动

两种滑动现象

是带传动的一种失 效形式,应避免

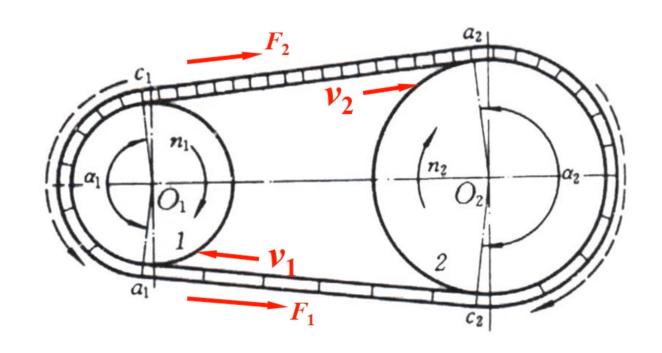

正常工作时的微量滑动现象,不可避免

Elastic Slip

弹性滑动

弹性滑动产生的原因

因 $F_1 > F_2$ 故松、紧边单位长度 上的变形量不等。 带绕过主动轮时拉力 逐渐减小,带逐渐收缩,使带相对于主动 轮的转向向后滑动。

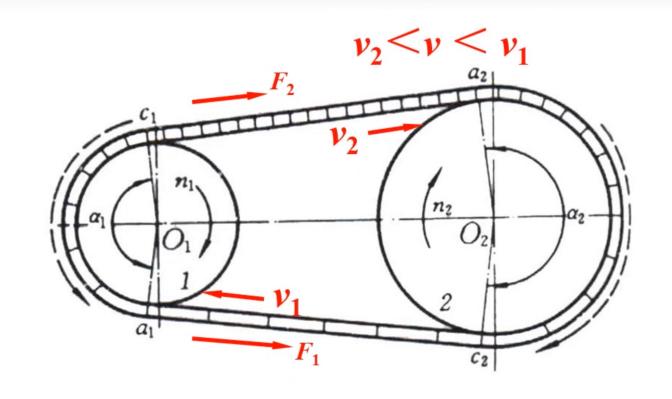


Elastic Slip

弹性滑动

弹性滑动产生的原因

同样的现象也发生在从动轮上。但情况有何不同?

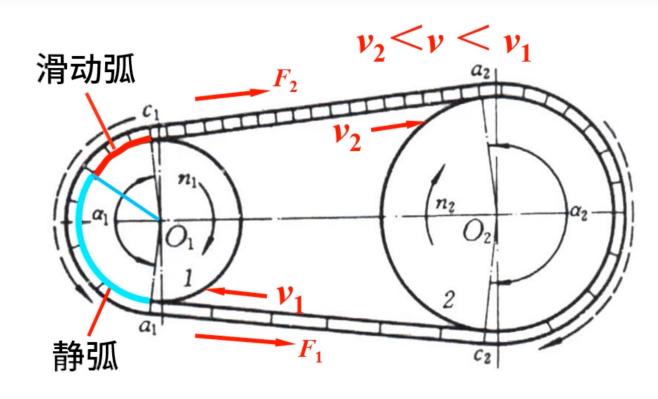

弹性滑动

弹性滑动产生的原因

同样的现象也发生在从动 轮上。但情况有何不同?

产生弹性滑动的原因:

是由 <u>弹性变形</u> 和 <u>拉力</u> <u>差</u> 引起的。


弹性滑动

弹性滑动产生的原因

同样的现象也发生在从动 轮上。但情况有何不同?

产生弹性滑动的原因:

是由<u>弹性变形</u>和 <u>拉力</u> 差引起的。

滑动弧等于接触弧长时转变成打滑 所以打滑总是先出现在小带轮上

弹性滑动

弹性滑动引起的不良后果

使从动轮的圆周速度低于主动轮 ,即 $v_2 < v_1$;

产生摩擦功率损失,降低了传动效率;

引起带的磨损,并使带温度升高,降低使用寿命 。

弹性滑动

传动比

$滑动率\varepsilon$ — 弹性滑动引起的从动轮圆周速度的相对降低量

$$\varepsilon = \frac{v_1 - v_2}{v_1} = \frac{d_{d1}n_1 - d_{d2}n_2}{d_{d1}n_1} = 1 - \frac{d_{d2}}{d_{d1}} \cdot \frac{n_2}{n_1}$$

传动比:
$$i = \frac{n_1}{n_2} = \frac{d_{d2}}{d_{d1}(1-\varepsilon)}$$
 对于V带: $\varepsilon \approx 0.01 \sim 0.02$ 粗略计算时可忽略不计

 ε 反映了弹性滑动的大小, ε 随载荷的改变而改变。

载荷越大,ε越大,传动比的变化越大。

Summary

小结

- ●弹性滑动产生的原因: V带的弹性变形和松紧边拉力差。
- ●弹性滑动是V带正常工作时的微量滑动现象,不可避免;
 - 打滑是V带传动的一种失效形式,应当避免。
- ●弹性滑动导致:从动轮的圆周速度低于主动轮,传动比不准确。

V-Belt Transmission Design

普通V带传动的设计

Objectives

目标

△ » V带传动的失效形式与设计准则

 $^{ ext{ iny B}}$ 单根普通 $^{ ext{ iny V}}$ 带的基本额定功率与额定功率

● > V带传动设计步骤和方法

Failure Modes and Design Guidelines

失效形式及设计准则

失效形式

- 打 滑 一带与带轮之间的显著滑动,过载引起(可起到过载保护作用)
- 疲劳破损 变应力引起

设计准则

在保证不打滑的前提下,具有足够的疲劳寿命。

单根V带的许用功率-承载能力计算

要保证带的疲劳寿命,应使最大应力不超过许用应力:

$$\sigma_{\text{max}} = \sigma_1 + \sigma_c + \sigma_{b1} \leq [\sigma]$$
 一不疲劳的要求

或:
$$\sigma_1 \leq [\sigma] - \sigma_c - \sigma_{b_1}$$
 而 $\sigma_1 = F_1/A$

根据欧拉公式,即将打滑时的最大有效拉力为:

$$F \leq F_{f \text{ lim}} = F_1 \left(1 - \frac{1}{e^{f_v \alpha}} \right)$$
 一不打滑的要求

则:
$$F \leq \sigma_1 A \left(1 - \frac{1}{e^{f_v \alpha}}\right) \leq ([\sigma] - \sigma_c - \sigma_{b1}) A \left(1 - \frac{1}{e^{f_v \alpha}}\right)$$

由此得单根 V 带所能传递的功率: $P_0 = \frac{Fv}{1000} \le ([\sigma] - \sigma_c - \sigma_{b1}) \left(1 - \frac{1}{e^{f_v \alpha}}\right) \frac{Av}{1000}$

单根V带的许用功率-承载能力计算

$\frac{1}{8}$ 表5-2列出了在特定条件下单根普通 \lor 带所能传递的功率,称为基本额定功率 P_0 。

表5-2 单根普通 V 带的基本额定功率 $P_0(kW)$

带型	d_{d1}	$n_1/(r/min)$												
	/mm	700	800	950	1200	1450	1600	1800	2000	2200	2400	2600	2800	3200
Z	50	0.09	0.10	0.12	0.14	0.16	0.17	0.19	0.20	0.21	0.22	0.24	0.26	0.28
	56	0.11	0.12	0.14	0.17	0.19	0.20	0.23	0.25	0.28	0.30	0.32	0.33	0.35
	63	0.13	0.15	0.18	0.22	0.25	0.27	0.30	0.32	0.35	0.37	0.39	0.41	0.45
	71	0.17	0.20	0.23	0.27	0.30	0.33	0.36	0.39	0.43	0.46	0.48	0.50	0.54
	80	0.20	0.22	0.26	0.30	0.35	0.39	0.42	0.44	0.47	0.50	0.53	0.56	0.61
	90	0.22	0.24	0.28	0.33	0.36	0.40	0.44	0.48	0.51	0.54	0.57	0.60	0.64
	75	0.40	0.45	0.51	0.60	0.68	0.73	0.78	0.84	0.88	0.92	0.96	1.00	1.04
	90	0.61	0.68	0.77	0.93	1.07	1.15	1.24	1.34	1.42	1.50	1.57	1.64	1.75
	100	0.74	0.83	0.95	1.14	1.32	1.42	1.54	1.66	1.76	1.87	1.96	2.05	2.19
	112	0.90	1.00	1.15	1.39	1.61	1.74	1.89	2.04	2.17	2.30	2.40	2.51	2.68
A	125	1.07	1.19	1.37	1.66	1.92	2.07	2.26	2.44	2.59	2.74	2.86	2.98	3.16
	140	1.26	1.41	1.62	1.96	2.28	2.45	2.66	2.87	3.04	3.22	3.36	3.48	3.65
	160	1.51	1.69	1.95	2.36	2.73	2.94	3.18	3.42	3.61	3.80	3.93	4.06	4.19
	180	1.76	1.97	2.27	2.47	3.16	3.40	3.66	3.93	4.12	4.32	4.43	4.54	4.58

特定条件:

传动平稳;

$$i=1$$
, $\alpha_1=\alpha_2=\pi$;

特定带长

单根V带的许用功率-承载能力计算

实际工作条件

- 传动比 i>1 从动轮直径增大, σ_{b2} 减小,传动能力提高,则额定功率增加 额定功率增量 $\triangle P_0$,查表5-3。
- 带长不等于特定带长
 - 一带越长,单位时间内的应力循环次数越少,

则带的疲劳寿命越长。相反,短带的

为此,引入带长修正系数 $K_{\rm L}$ 。

- 包角 α 不等于 π (因为 i > 1)
 - 小带轮包角小于 π ,传动能力有所下降,引入包角修正系数 K_{α} 。 $K_{\alpha} \leq 1$

单根V带的许用功率-承载能力计算

单根V带的额定功率

在实际工作条件下,单根 V 带的额定功率为:

$$[P_0] = (P_0 + \triangle P_0) K_L K_\alpha \qquad kW$$

所需 V 带根数:
$$z = \frac{P_{\rm C}}{[P_{\rm 0}]}$$
 ——实际工作条件下需要传递的功率

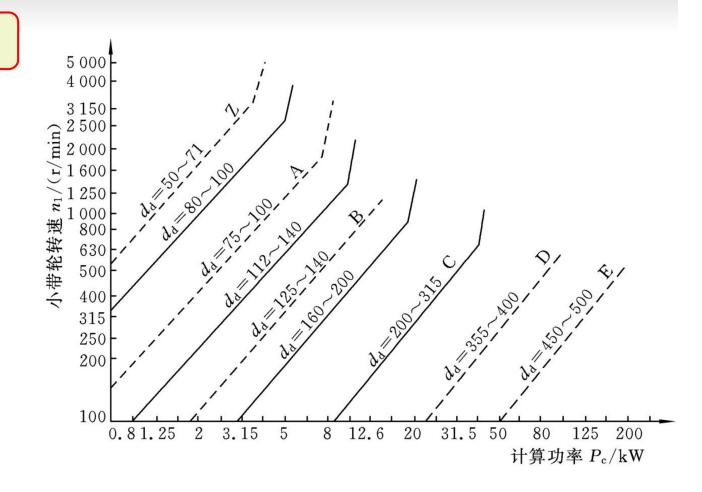
普通V带传动的设计计算

已知条件及设计内容

已知条件

设计内容

传递的名义功率P; 主动轮转速 n_1 ; 从动轮转速 n_2 或传动比i; 传动位置要求; 工况条件、原动机类型等。 V带的型号、长度和根数;带轮直径和结构; 传动中心距 a; 验算带速v和包角 α_1 ; 计算初拉力和压轴力。


普通V带传动的设计计算

设计步骤和方法

工况系数

1.确定设计功率 $P_{\rm C} = K_{\rm A} P$

2.根据 n_1 、 P_C 选择 V 带型号

普通V带传动的设计计算

设计步骤和方法

- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型 带轮愈小,弯曲应力愈大,所以 $d_{d1} \ge d_{dmin}$
- 3.确定带轮基准直径 dai、da2

普通V带传动的设计计算

设计步骤和方法

- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型号
- 3.确定带轮基准直径 ddi、dd2

表 5-7 普通 V 带轮的最小基准直径 (mm)										
型	号	Y	Z	A	В	С	D	Е		
$d_{ m dmin}$		20	50	75	125	200	355	500		

注:带轮直径系列为 20,22.4,25,28,31.5,35.5,40,45,50,56,63,71,75,80,85,90,95,100,106,112,118,125,132,140,150,160,170,180,200,212,224,236,250,265,280,300,315,335,355,375,400,425,450,475,500,530,560,600,630,670,710,750,800,900,1 000,1 060,1 120,1 250,1 400,1 500,1 600,1 800,2 000,2 240,2 500。

普通V带传动的设计计算

设计步骤和方法

- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型号
- 3.确定带轮基准直径 d_{d1} 、 d_{d2}

 $d_{\rm d2} = i d_{\rm d1}(1-\varepsilon)$, 圆整成标准值

普通V带传动的设计计算

设计步骤和方法

- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型号
- $v = \frac{\pi d_{d1} n_1}{60 \times 1000}$
- 4.验算带速 v (v=5~25m/s)

普通V带传动的设计计算

设计步骤和方法

- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型号
- 3.确定带轮基准直径 dd1、 dd2
- 4.验算带速 v (v=5~25m/s)

普通V带传动的设计计算

设计步骤和方法

4.验算带速 v (v=5~25m/s)

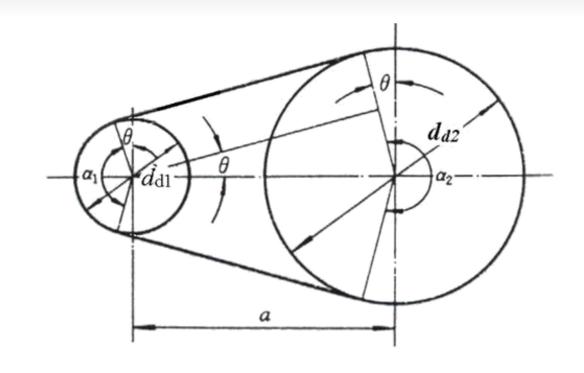
$$v = \frac{\pi d_{d1} n_1}{60 \times 1000}$$

带轮愈小,弯曲应力愈大,所以 $d_{d1} \ge d_{dmin}$

表 5-7 普通 V 带轮的最小基准直径

(mm)

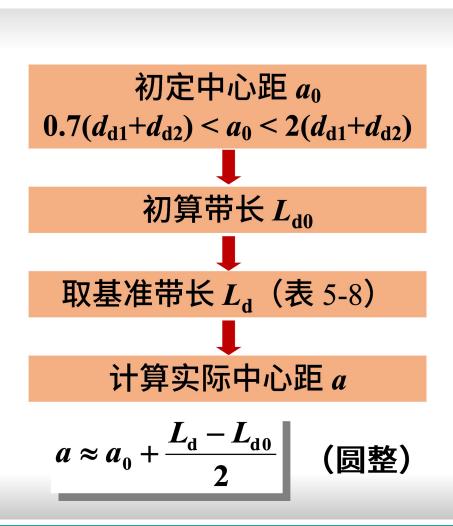
型号	Y	Z	A	В	С	D	Е
$d_{ m dmin}$	20	50	75	125	200	355	500


注:带轮直径系列为 20,22.4,25,28,31.5,35.5,40,45,50,56,63,71,75,80,85,90,95,100,106,112,118,125,132,140,150,160,170,180,200,212,224,236,250,265,280,300,315,335,355,375,400,425,450,475,500,530,560,600,630,670,710,750,800,900,1 000,1 060,1 120,1 250,1 400,1 500,1 600,1 800,2 000,2 240,2 500。

$$d_{d2} = i d_{d1}(1-\varepsilon)$$
,圆整成标准值

普通V带传动的设计计算

设计步骤和方法


- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型号
- 3.确定带轮基准直径 d_{d1} 、 d_{d2}
- 4.验算带速 v (v=5~25m/s)
 - 5.确定中心距 a 及带长 L_d

a 过小: 带短,易疲劳, α_1 小

a 过大:易引起带的抖动

普通V带传动的设计计算

$L_{d0} = 2a_0 + \frac{\pi}{2}(d_{d1} + d_{d2}) +$	$\frac{\left(d_{\rm d2} - d_{\rm d1}\right)^2}{4a_0}$
the second section of the section of the second section of the section of the second section of the second section of the second section of the section of	

带型	Y	Z	A	В	С	D	Е
	200	405	630	930	1 565	2 740	4 660
	224	475	700	1 000	1 760	3 100	5 040
	250	530	790	1 100	1 950	3 330	5 420
	280	625	890	1 210	2 195	3 730	6 100
	315	700	990	1 370	2 420	4 080	6 850
	355	780	1 100	1 560	2 715	4 620	7 650
	400	820	1 250	1 760	2 880	5 400	9 150
	450	1 080	1 430	1 950	3 520	6 100	12 230
	500	1 330	1 550	2 180	3 080	6 840	13 750
		1 420	1 640	2 300	3 520	7 620	15 280
$L_{\rm d}/{ m mm}$		1 540	1 750	2 500	4 060	9 140	16 800
			1 940	2 700	4 600	10 700	
			2 050	2 870	5 380	12 200	
			2 200	3 200	6 100	13 700	
			2 300	3 600	6 815	15 200	
			2 480	4 060	7 600		
			2 700	4 430	9 100		
				4 820	10 700		
				5 370			
				6 070			
							L

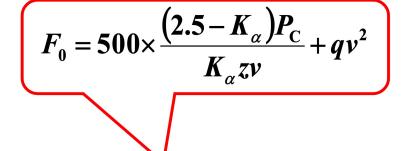
普通V带传动的设计计算

设计步骤和方法

- 1.确定设计功率 $P_{\rm C} = K_{\rm A} P$
- 2.根据 n_1 、 P_C 选择 V 带型号
- \rightarrow 3.确定带轮基准直径 d_{d1} 、 d_{d2}
- N 4.验算带速 v (v=5~25m/s)
 - 5.确定中心距 a 及带长 L_d
 - 6.验算主动轮的包角α1

$$\alpha_1 = 180^{\circ} - \frac{d_{d2} - d_{d1}}{a} \times 57.3^{\circ} \ge 120^{\circ}$$

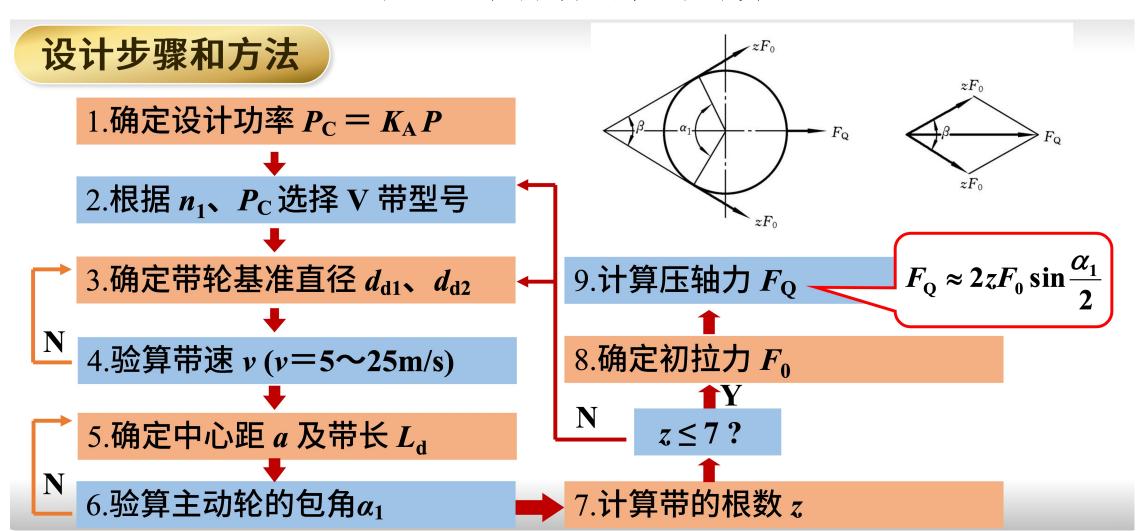
$$z = \frac{P_{\mathrm{C}}}{[P_{0}]} = \frac{P_{\mathrm{C}}}{(P_{0} + \Delta P_{0})K_{\mathrm{L}}K_{\alpha}} \leq 7$$


- $z \leq 7$?
- → 7.计算带的根数 z

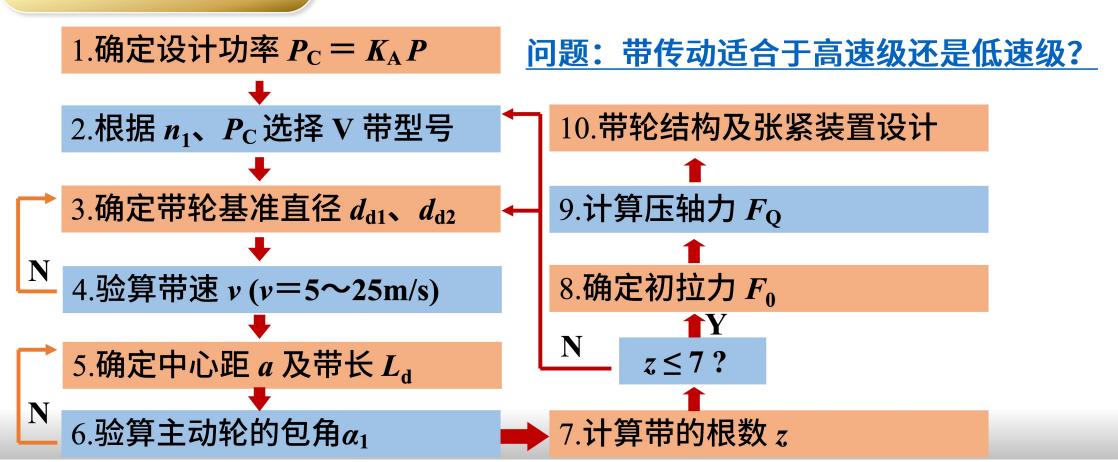
普通V带传动的设计计算

设计步骤和方法

- 2.根据 n_1 、 P_C 选择 V 带型号
- 3.确定带轮基准直径 d_{d1} 、 d_{d2}
- N 4.验算带速 v (v=5~25m/s)
 - 5.确定中心距 a 及带长 L_d
 - 6.验算主动轮的包角α1



8.确定初拉力 F_0


 \rightarrow 7.计算带的根数 z

普通V带传动的设计计算

普通V带传动的设计计算

设计步骤和方法

Summary

总结

• 失效形式: 打滑与疲劳破损;

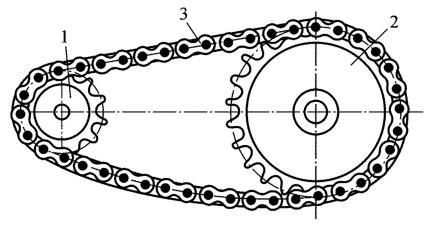
设计准则:保证不打滑的前提下,具有足够的疲劳寿命。

- 单根普通V带基本额定功率: 特定条件
 - 额定功率: 考虑传动比、带长、包角修正
- · V带传动设计步骤和方法,带型、带长、包角、带轮基 准直径、中心距、带速对承载能力及寿命的影响

Roller Chain Transmission

滚子链传动及其运动特性

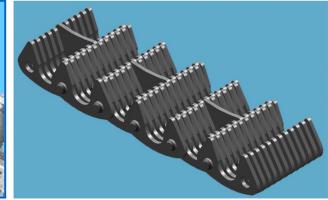
Types and Characteristics of Chain Transmission


链传动的类型及特点

(A) >> 传动链的类型及特点

- → 套筒滚子链的结构和参数
- 》 套筒滚子链传动的运动特性

Types and Characteristics of Chain Transmission


链传动的类型及特点

1一主动链轮 2一从动链轮 3一链条

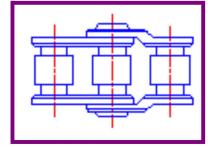
传动链常用: 滚子链 和 齿形链

Roller Chain Design and Parameters

套筒滚子链的结构和参数

- 没有弹性滑动和打滑,能保持准确的平均传动比;
- ●传动效率较高(可达95%~98%);
- 压轴力小;
- 传递功率比带传动大, $P \le 100 \text{ kW}$;
- 可在恶劣的环境下工作;
- 瞬时速比变化,振动、噪声大;
- 适用的速度比带小, v≤15 m/s。

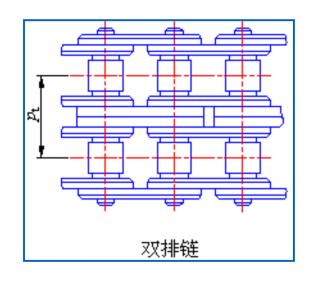
Roller Chain Design and Parameters


套筒滚子链的结构和参数

滚子链是标准件,分A、B两个系列,常用A系列 滚子链的主要参数包括:

p — 节距,相邻两销轴中心距;

 $L_{\rm p}$ — 链节数,表示链的长度, 常取偶数,以便首尾相连;


链节数若为奇数,接头处需采用 过渡链节,会产生附加弯矩

链排数 — 滚子链可做成单排或多排链。

套筒滚子链的运动特性

套筒滚子链的运动特性

链传动的平均速度及平均传动比

链轮抽象成正多边形,边长为节距 p ,边数等于链轮齿数 z 。


链轮每转一圈,转过的链长为 zp

故链的平均速度:

$$v = \frac{z_1 p n_1}{60 \times 1000} = \frac{z_2 p n_2}{60 \times 1000}$$
 m/s

平均传动比:
$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1}$$

即:平均速度和平均传动比均为常数

套筒滚子链的运动特性

ME303 Introduction to Mechanical Design

链传动运动的不均匀性

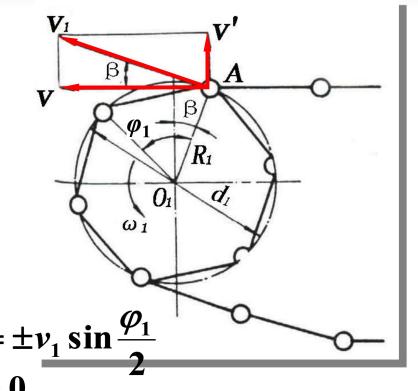
假定:主动边总处于水平位置

A 点圆周速度: $v_1 = R_1 \omega_1$

链速: $v = v_1 \cos \beta = R_1 \omega_1 \cos \beta$

垂直分速度: $v' = R_1 \omega_1 \sin \beta$

链节所对应的中心角: $\varphi_1 = 360^{\circ}/z_1$


则 β 的变化范围: $+\varphi_1/2\sim-\varphi_1/2$

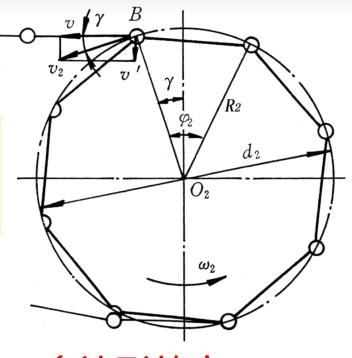
当 $\beta = \pm \varphi_1/2$ 时: $v_{\min} = R_1 \omega_1 \cos(\varphi_1/2) \quad v'_{\max} = \pm v_1 \sin \frac{\varphi_1}{2}$

当 $\beta=0$ 时: $v_{\text{max}}=v_1=R_1\omega_1$

 $v'_{\min} = 0$

所以: $z_1 \downarrow \rightarrow \varphi_1 \uparrow \rightarrow v$ 的变化 \uparrow 。 v' 的变化使链条抖动。

套筒滚子链的运动特性


在从动轮上:

B 点圆周速度为 v_2 ,角速度 ω_2

則:
$$v_2 = \frac{v}{\cos \gamma} = \frac{v_1 \cos \beta}{\cos \gamma}$$

$$= \frac{R_1 \omega_1 \cos \beta}{\cos \gamma} = R_2 \omega_2$$
故瞬时传动比: $i_t = \frac{\omega_1}{\omega_2} = \frac{R_2 \cos \gamma}{R_1 \cos \beta}$

 $\underline{\underline{H}}$: $\underline{\underline{H}}z_1=z_2$, $\underline{\underline{H}}a=np$, 则i恒定

故瞬时传动比:
$$i_{\mathrm{t}} = \frac{\omega_{1}}{\omega_{2}} = \frac{R_{2} \cos \gamma}{R_{1} \cos \beta}$$

瞬时速比及从动轮角速度周期性变化,

这种现象称为多边形效应。

由于运动的不均匀性,引起振动和冲击,所以链传动常用于速度较低的场合。

Roller Chain Motion Characteristics

套筒滚子链的运动特性

链传动的动载荷

产生动载荷的原因:

• 链速 v 的加速度 $a = \frac{dv}{dt} = \frac{d(R_1\omega_1\cos\beta)}{dt} = -R_1\omega_1^2\sin\beta$

$$\beta = \pm \varphi_1/2$$
时, a 最大:

$$a_{\text{max}} = \pm R_1 \omega_1^2 \sin \frac{\varphi_1}{2} = \pm R_1 \omega_1^2 \sin \left(\frac{180^\circ}{z_1}\right) = \pm \frac{\omega_1^2 p}{2}$$

故转速愈高、节距愈大,加速度越大、动载荷越大。

- 链条的垂直分速度 v' 的变化 导致链横向振动。
- 链条啮入时会产生啮合冲击

措施: 齿数尽量取多些 节距尽量取小些 置于低速场合

Summary

小结

- 套筒滚子链传动的平均传动比为常数,等于大小链轮齿数比;
- 由于多边形效应,瞬时传动比周期性变化,引起振动和冲击;
- 减小动载荷的措施: 齿数尽量取多,节距尽量取小,常用于速度较低的场合。

Roller Chain Design

滚子链传动的设计

Objective

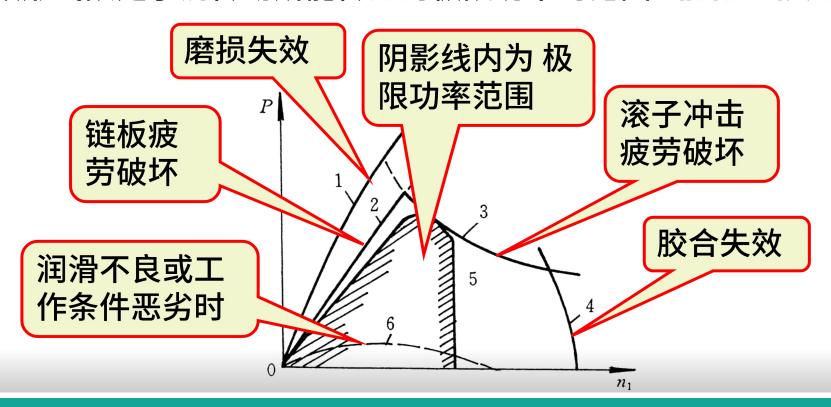
小结

- A 滚子链传动的失效形式
- B 极限功率曲线
- 主要参数的选择
- D 设计步骤和方法

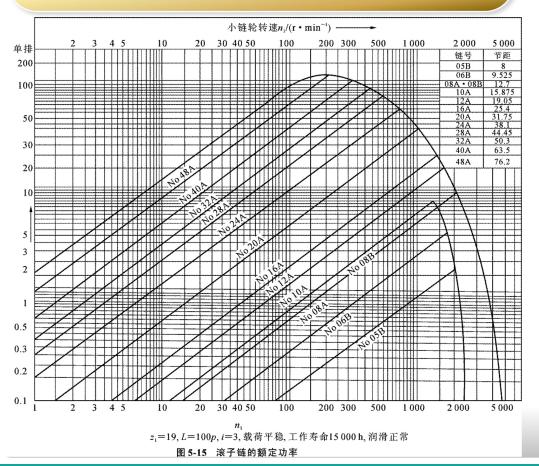
链传动的失效形式及功率曲线

失效形式

- 铰链磨损——导致节距变长,引起跳齿或脱链;
- 链板疲劳断裂——由于变应力作用产生疲劳断裂;
- 冲击疲劳破坏——反复冲击使滚子、套筒疲劳破坏;
- 胶合——润滑不良且速度过高使销轴套筒间产生胶合;
- 过载拉断——载荷过大引起静强度破坏。



链传动的失效形式及功率曲线


链传动的极限功率曲线

各种失效形式限定了链传动所能传递的极限功率的范围 俗称"帐篷曲线"

链传动的失效形式及功率曲线

滚子链传动的额定功率曲线

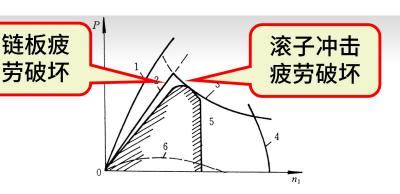
根据<mark>特定条件下</mark>的实验结果,经修正 后得到常用滚子链的额定功率曲线。

特定条件: z_1 =19、 L_p =100节、单排链、 ……

小链轮转速 n_1

链额定功率 P_0

确定链号


链传动的失效形式及功率曲线

特定条件下单排链所能传递的功率: P₀

实际情况下链条所能传递的功率: $[P_0] = K_z K_L K_p P_0$

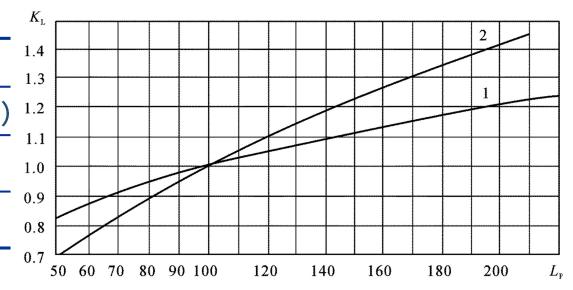
实际情况下的修正系数:

实验条件	实际情况引入修正系数
齿数 z ₁ =19	齿数系数 K _z 或 K _z '(表 5-12)
链长 L=100p	
单排链	

表 $5-12$ 小链轮齿数系数 K_Z 及	$K_{\mathbf{Z}}'$
--------------------------	-------------------

z_1	9	10	11	12	13	14	15	16	17
$K_{\rm Z}$	0.446	0.500	0.554	0.609	0.664	0.719	0.775	0.831	0.887
K_{Z}^{\prime}	0.326	0.382	0.441	0.502	0.566	0.633	0.701	0.773	0.846
z_1	19	21	23	25	27	29	31	33	35
$K_{\rm Z}$	1.00	1.11	1.23	1.34	1.46	1.58	1.70	1.82	1.93
K_{Z}^{\prime}	1.00	1.16	1.33	1.51	1.69	1.89	2.08	2. 29	2.50

工作点落在曲 线顶点的左侧 (链板疲劳) 工作点落在曲 线顶点的右侧 (冲击疲劳)


链传动的失效形式及功率曲线

特定条件下单排链所能传递的功率: P_0

实际情况下链条所能传递的功率: $[P_0] = K_z K_L K_p P_0$

实际情况下的修正系数:

实验条件	实际情况引入修正系数
齿数 z ₁ =19	齿数系数 K _z 或 K _z '(表 5-12)
链长 L=100p	链长系数 K _L (图 5 - 17)
单排链	

链传动的失效形式及功率曲线

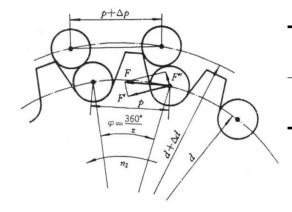
特定条件下单排链所能传递的功率: P_0

实际情况下链条所能传递的功率: $[P_0] = K_z K_L K_p P_0$

实际情况下的修正系数:

实验条件	实际情况引入修正系数							
齿数 z ₁ =19	齿数系数 K_z 或 K_z' (表 5-12)							
链长 L=100p	链长系数 K _L (图 5 - 17) -	排 粉	1	表 5-	-13 多排链系	系数 K _P	5	6
 单排链	多排链系数 K _p (表 5-13)	K _P	1	1.7	2.5	3.3	4.0	4.6

链传动的计算功率: $P_C = K_A P$ P— 需传递的名义功率 K_A — 工况系数


由 $P_C \leq [P_0]$ 得: 单排链额定功率 $P_0 \geq \frac{K_A P}{K_z K_L K_p}$ 由 $P_0 \setminus n_1$ 查图5-15确定链号

Design Parameters of Chain Transmission

链传动主要参数的选择

链轮齿数

小链轮齿数 z_1 愈多,传动愈平稳,动载荷减小。 通常取 $z_1 \ge 17$, 且传动比 i 越小, z_1 可越多(表5-14)。 大链轮齿数 $z_2 = i z_1$,常取 $z_2 \le 120$, 以防止脱链。

链节伸长量与分度圆外移量的关系

表 5-14 小链轮齿数 z₁

传动比 i	1~2	3~4	5~6	>6
齿数 z ₁	27~31	25~29	17~21	17

$$\Delta d = \frac{\Delta p}{\sin\left(180^{\circ}/z\right)}$$

Design Parameters of Chain Transmission

链传动主要参数的选择

链节数Lp

为了使链条接头处正好是外链板与内链板相连接,链节数常取偶数。 为使磨损均匀,链轮齿数常取奇数。

节距p

节距 *p* 越大,承载能力越大。

但 p 过大,运动越不均匀,冲击越大,且结构庞大。

所以, 高速重载时, 宜选小节距多排链;

低速重载时,宜选大节距单排链

中心距 a a 过小,易疲劳;过大,易抖动。常取 $a = (30 \sim 50)$ p; $a_{\text{max}} \leq 80p$

Design Method of Chain Transmission

滚子链传动的设计方法

1.选择齿数 z_1 (按传动比 i)

- 2.确定齿数 z₂=z₁i≤120
- 3.确定链排数
- 4.初定中心距和链节数
- 5.确定系数 K_A 、 K_z 、 K_L 及 K_p
- 6.计算所需的额定功率 P_0

$$a_0 \approx (30 \sim 50) p$$


$$L_{\rm p} = 2 \frac{a_0}{p} + \frac{z_1 + z_2}{2} + \left(\frac{z_2 - z_1}{2\pi}\right)^2 \frac{p}{a_0}$$

 L_{p} 应圆整成偶数。

$$P_0 \ge \frac{P_{\rm C}}{K_{\rm z} K_{\rm L} K_{\rm p}}$$

Design Method of Chain Transmission

滚子链传动的设计方法

Summary

小结

- 失效形式: 磨损,疲劳破坏,过载断裂,胶合
- 额定功率曲线(帐篷曲线)
- 参数选择: 链轮齿数, 链节数, 节距, 中心距

Assignment 06

Link will be closed before this Sunday noon. No late submission.

- To be shared in Feishu Group
- Scan the code using Feishu to submit
- https://wenjuan.feishu.cn/m?t=sRvLp
 7I5UKwi-vdd4

21年秋季ME303第六次作 业提交链接

打开飞书"扫一扫"

Thank you~

ME303 Introduction to Mechanical Design

Adapted from https://www.icourse163.org/course/HUST-1206698847